Abstract:
A multi-band receiver is disclosed. The multi-band receiver includes a low-noise amplifier (LNA) and a mixer. The LNA includes a switched receiving circuit, a loading circuit, and a switching circuit. The switched receiving circuit has a first receiving circuit for receiving a first signal corresponding to a first frequency, and a second receiving circuit for receiving a second signal corresponding to a second frequency. The loading circuit is utilized for providing a specific load to the switched receiving circuit. The switching circuit is used for controlling whether the first signal or the second signal is transferred to the loading circuit. The mixer is coupled to the low-noise amplifier for receiving an output signal generated from the LNA and for down-converting the output signal.
Abstract:
A low noise amplifier (LNA) includes first and second transistors, an inductor, and a first resistor. The gate of the first transistor is connected to an RF input node, the source being connected to a first ground node. The source of the second transistor is connected to the drain of the first transistor, the drain of the second transistor being connected to an RF output node and the gate being connected to a first bias voltage. The first resistor and the inductor are connected in parallel between the RF output node and a supply voltage. The first resistor is selected such that the LNA resonant frequency is greater than 1.5 times an operating frequency. In a CMOS circuit, the source of the transistor in the current mirror circuit, the first ground node, and the capacitor are each connected to ground through three separate ground paths having parasitic inductances provided by three off-chip bonding wires.
Abstract:
An adjusting method for reducing local oscillation leakage or I/Q mismatch in a transmitter includes the steps of: (a) detecting a current extent of local oscillation leakage or I/Q mismatch; (b) determining if an adjusting direction is correct with reference to the current extent of local oscillation leakage or I/Q mismatch thus detected, maintaining the adjusting direction if correct, and reversing the adjusting direction upon determining that the adjusting direction is incorrect; and (c) adjusting a control signal according to the adjusting direction.
Abstract:
A signal converting circuit includes: a first switching circuit; a second switching circuit; and a first balance-unbalance circuit (Balun) having a first signal terminal coupled to an antenna, a second signal terminal coupled to the first switching circuit, and a third signal terminal coupled to the second switching circuit; wherein when the first balance-unbalance circuit operates in a first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a first signal processing circuit, and when the first balance-unbalance circuit does not operate in the first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a reference voltage.
Abstract:
An amplifier includes a transformer and a first stage gain circuit. The transformer includes a primary coil and a secondary coil. The primary coil is utilized for receiving an input signal. The first stage gain circuit has a first input port, which is coupled to the primary coil. The first stage gain circuit is utilized for gaining the input signal so as to generate a first output.
Abstract:
An operating circuit applied to a backlight is provided, where the backlight includes a plurality of lighting elements, and the operating circuit includes a plurality of current control circuits, a plurality of switches, a minimum voltage selector, a supply voltage generating circuit and a control unit. The current control circuits are coupled to the lighting elements via a plurality of nodes, respectively. The switches are coupled to the nodes, respectively. The minimum voltage selector is utilized for receiving at least a portion of voltages of the plurality of nodes, and selecting a minimum voltage among the received voltages. The supply voltage generating circuit is utilized for generating a supply voltage of the lighting elements according to the minimum voltage. For each of the switches, the control unit determines an on/off state of the switch by determining whether the corresponding lighting element is an open circuit or not.
Abstract:
A voltage conversion apparatus includes a DC-to-DC conversion circuit, a sensing circuit, and a compensation circuit. The voltage conversion apparatus is capable of adaptively adjusting the system bandwidth according to the load. The system bandwidth is increased to make the converted voltage responding to the load rapidly when the voltage conversion apparatus is operated at a transient state; and the system bandwidth is decreased to increase the system stability when the voltage conversion circuit is operated at a steady state.
Abstract:
A method and device for calibrating in-phase and quadrature-phase (IQ) mismatch. The device is used in a direct down-conversion circuit of a communication system. The device has a first mixer for mixing an RF signal with a first carrier signal, so as to generate an in-phase analog signal; a second mixer for mixing the RF signal with a second carrier signal, so as to generate a quadrature-phase analog signal; an operation unit for executing a Least Mean Square (LMS) algorithm and thereby generating a compensation signal according to the in-phase analog signal and the quadrature-phase analog signal; and a calibration unit for compensating the in-phase analog signal and the quadrature-phase analog signal according to the compensation signal, so as to calibrate the IQ mismatch between the in-phase analog signal and the quadrature-phase analog signal.
Abstract:
An operating circuit applied to a backlight includes at least one current control circuit, where the current control circuit includes a transistor, an operational amplifier and a switch module. The transistor has a gate, a first electrode and a second electrode, where the first electrode is coupled to a lighting element, and the second electrode is coupled to a resistor. The operational amplifier has positive and negative input terminals, and positive and negative output terminals. The switch module switches a connection relationship between the positive input terminal, the negative input terminal, the reference voltage and the second electrode of the transistor, and switches a connection relationship between the positive output terminal, the negative output terminal and the gate of the transistor to make the close loop form a negative feedback, and the current of the lighting element not influenced by an offset voltage of the operational amplifier.
Abstract:
An operating circuit applied to a backlight is provided, where the backlight includes a plurality of lighting elements, and the operating circuit includes a plurality of current control circuits, a plurality of switches, a minimum voltage selector, a supply voltage generating circuit and a control unit. The current control circuits are coupled to the lighting elements via a plurality of nodes, respectively. The switches are coupled to the nodes, respectively. The minimum voltage selector is utilized for receiving at least a portion of voltages of the plurality of nodes, and selecting a minimum voltage among the received voltages. The supply voltage generating circuit is utilized for generating a supply voltage of the lighting elements according to the minimum voltage. For each of the switches, the control unit determines an on/off state of the switch by determining whether the corresponding lighting element is an open circuit or not.