Abstract:
The present invention relates to uses of Macrolactin A produced by Bacillus polyfermenticus KJS-2 (KCCM 10769P), which is a new bacillus strain, as an antibiotic. Macrolactin A of the present invention, which is produced by Bacillus polyfermenticus KJS-2, shows a broad spectrum of antibiotic activity against a variety of microorganisms and fungi, and is proved to be very efficient for the inhibition of particularly vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus Aureus (MRSA) that are multidrug-resistant bacteria. The antibiotic Macrolactin A produced by Bacillus polyfermenticus KJS-2, can be used as an excellent antibiotic against vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus Aureus (MRSA), and thus the present invention is a very useful invention for medical industry.
Abstract:
Provided is a heterogeneous network interworking method for a mobile node having multiple network interfaces. When the mobile node moves from a first network to a second network, the method includes transmitting a packet via a first network interface at the first network, before moving to the second network, by setting up a simple IP address, which is a fixed address of the mobile node, as a sender's address in an inner header of the packet, and an IP address assigned actually to the first network interface as a sender's address in an external header; and transmitting a packet via a second network interface at the second network, after moving to the second network, by setting up said simple IP address as a sender's address in the inner header of the packet and an IP address assigned actually to the second network interface as a sender's address in the external header. In other embodiment, the method includes generating a virtual network interface; and adjusting a flow of packet in a link layer so as to make a packet passing through the multiple network interfaces to be transferred to a mobile IP layer through the virtual network interface.