Abstract:
Disclosed herein is a refrigerator. In a refrigeration cycle including a channel switching valve to selectively supply a refrigerant to a first evaporator side and/or a second evaporator side and hot pipes, a hot pipe on a freezing chamber side and a hot pipe on a refrigerating chamber are disposed upstream and downstream of the channel switching valve, respectively to reduce unbalance in amounts of the refrigerant and in the amounts of generated heat.
Abstract:
The present invention discloses a remote controlling system and method for an electric device, including: one or more electric devices (200, 300) for communicating with a remote controlling device (100) through a wireless communication network, transmitting state information to the remote controlling device (100) according to a state request command from the remote controlling device (100), and controlling operations according to an operation control command from the remote controlling device (100); and the remote controlling device (100) for transmitting the state request command to the electric device (200, 300) selected by the user, and receiving and displaying the state information, or transmitting the operation control command to the electric device (200, 300). The remote controlling system and method for the electric device (200, 300) displays the states of the electric devices (200, 300) and controls the operations thereof.
Abstract:
A refrigerator which can control a supercooling degree corresponding to user's taste or kinds of food, and a cooling control method thereof are disclosed. The refrigerator has a function of supercooling a drink, and includes an input unit to select a slush level for adjusting a supercooling degree of the drink in response to a user's command, a memory unit to store information about a supercooling temperature of the drink corresponding to a selected slush level, and a controller to adjust the supercooling degree of the drink by controlling a temperature within the supercooling compartment based on the information about the supercooling temperature of the drink stored in the memory unit.
Abstract:
A refrigerator that allows a user to receive supercooled beverage through a dispenser in the refrigerator door. The refrigerator includes a main body having a compartment and a door opening and closing the compartment, a supercooling compartment in the main body to supercool a beverage, and a dispenser in the door to dispense supercooled liquid from the supercooling compartment without opening the door. A supercooled liquid tank is detachably installed in the supercooling compartment to supercool beverage. The supercooling compartment is installed in the rear side of the door such that a supercooling compartment door may be installed in the front side of the door to open and close the supercooling compartment in front of the door.
Abstract:
A refrigerator includes a first storage chamber, a second storage chamber spatially-separated from the first storage chamber, a first refrigeration cycle system to cool the first storage chamber using a first refrigeration cycle, and a second refrigeration cycle system installed to be separated from the first refrigeration cycle system to cool the second storage chamber using a second refrigeration cycle in an independent manner from the first refrigeration cycle. The first and second storage chambers maintain first and second target temperatures, respectively. The first and second refrigeration cycle systems circulate different kinds of refrigerants to cool the first and second storage chambers, respectively.
Abstract:
Disclosed herein is a refrigerator. The refrigerator includes a main body including inner liners defining a freezer compartment and refrigerator compartment, doors rotatably coupled to the main body, gaskets installed at rears of the doors, each of the gaskets having a magnet provided therein, an intermediate partition wall formed by filling a space between the inner liners with an insulation material, an intermediate front plate disposed at a front of the intermediate partition wall to fix the inner liners, and a heat pipe installed at the front of the intermediate partition wall in a line to prevent dew from being formed on the intermediate front plate, wherein the intermediate front plate is formed in an asymmetric fashion so that the heat pipe installed at the front of the intermediate partition wall is fixed to a middle portion of the intermediate front plate in a tight contact fashion.
Abstract:
A control method of a refrigerator including a compressor to supply refrigerant to an evaporator to cool a storage compartment, a valve to adjust flow of the refrigerant, a fan to blow air heat-exchanged by the evaporator, and a heater to remove frost from the evaporator. The control method includes, upon receiving a power-saving signal, determining whether the received power-saving signal is a first or second power-saving mode signal, upon determining that the power-saving signal is the first power-saving mode signal, performing at least one selected from among resetting of target temperature of the storage compartment, adjustment of an operation rate of the compressor, and adjustment of operation time of the heater to execute a first power-saving mode, and, upon determining that the power-saving signal is the second power-saving mode signal, controlling the compressor, the fan, and the heater to be off to execute a second power-saving mode.
Abstract:
To store and play contents streamed in a multimedia streaming system, an operating method of a server in the multimedia streaming system includes receiving a transmission request for a Media Presentation Description (MPD) file; and transmitting the MPD file including a flag indicating whether it is possible to generate a media file that is playable by a media file player by concatenating transmitted segments.
Abstract:
A refrigerator and a dehumidification control method thereof to effectively perform both temperature compensation and dehumidification so as to prevent formation of dewdrops in a refrigerating compartment of the refrigerator. The control method includes detecting a temperature of outside air around the refrigerator to judge whether or not the detected temperature corresponds to a low-temperature mode requiring dehumidification, heating a refrigerating compartment by operating a refrigerating compartment heater and a refrigerating compartment fan for dehumidification if the low-temperature mode is judged, cooling the refrigerating compartment by operating a compressor while continuously operating the refrigerating compartment fan, and simultaneously cooling and heating the refrigerating compartment to enable simultaneous implementation of temperature compensation by heating of the refrigerating compartment and dehumidification by cooling of the refrigerating compartment.