Abstract:
The present invention relates to a computer implemented system and method for generating and interacting with a multi-factoral patient simulation responsive to user queries and interventions.
Abstract:
The present invention relates to ink-jet transfer papers that can be printed with images using ink-jet printers. The ink-jet printable transfer papers comprise a support paper having a surface coated with layer (a) and ink-receptive layer (b). Layer (a) comprises a polyurethane binder and inorganic pigment, and layer (b) comprises a polyurethane binder and organic polymeric particles. The printed image can be heat-transferred to fabric materials particularly dark-colored fabrics such as black T-shirts.
Abstract:
The present invention relates to ink-jet transfer media that can be printed with images using ink-jet printers. The printed image can be thermally transferred to fabric materials such as black or white colored T-shirts. The ink-jet transfer media of this invention comprise a support paper containing independently removable panels. Each removable panel is capable of being peeled away from the film coating. The removable panels are divided by means of a peel line in the paper.
Abstract:
Method and apparatus for introducing normally solid metals or metalloids into electrically conductive substrates. The invention is particularly useful in surface alloying of metal substrates and makes it possible to introduce such metals as tungsten into ferrous metal substrates to diffused depths of 100 microns and more without undue expense. The metal or metalloid to be introduced is maintained at an elevated temperature below the boiling point but equal to at least 40% of the melting point, the surface portion of the substrate is maintained at an elevated temperature below the deformation point, and a double glow discharge is employed under controlled conditions to transfer the metal or metalloid to the substrate.
Abstract:
Systems, methods, and other embodiments associated with content invalidation are described. One example method includes providing an invalidation directive in a header of a response.
Abstract:
An input device includes a cover and a base. The cover includes a button and a protrusion. The protrusion protrudes from the button. The base includes a processing unit and a button controlling module. The button controlling module includes a first magnetic member, a second magnetic member, and a movement sensing unit. The adjacent ends of the first magnetic member and the second magnetic member have the same polarity. The protrusion of the button contacts the first magnetic member. The movement sensing unit is for sensing the movement of the second magnetic member and for transmitting the sensed movement data of the second magnetic member to the processing unit. The processing unit determines the depressed button according to the sensed movement data of the second magnetic member.
Abstract:
A mobile communication device includes a main body, a communication unit, an earpiece, a mouthpiece, a comparison unit and a first driver. The communication unit generates a starting signal when the communication device and another communication device establish a connection. The earpiece rotates with respect to the main body. The mouthpiece receives ambient sound and determines an ambient noise level according to the collected ambient sound in response to the starting signal. The comparison unit determines whether the ambient noise level is equal to a predetermined value, and generates a first driving signal when the ambient noise level is not equal to the predetermined value. The first driver drives the earpiece to rotate toward an ear of a user of the mobile communication device in response to the first driving signal.
Abstract:
An input device includes a cover and a base. The cover includes a button and a protrusion. The protrusion protrudes from the button. The base includes a processing unit and a button controlling module. The button controlling module includes a first magnetic member, a second magnetic member, and a movement sensing unit. The adjacent ends of the first magnetic member and the second magnetic member have the same polarity. The protrusion of the button contacts the first magnetic member. The movement sensing unit is for sensing the movement of the second magnetic member and for transmitting the sensed movement data of the second magnetic member to the processing unit. The processing unit determines the depressed button according to the sensed movement data of the second magnetic member.