Abstract:
Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
Abstract:
Optical lenses are described and include a polymeric interference filter disposed on a curved polymeric substrate. The optical lens has an average light transmission of less than 2% across a band of blue light from 400 nm to at least 420 and up to 440 nm and substantially transmits blue light greater than 450 nm.
Abstract:
Polarizer stacks are described. More particularly, polarizer stacks that include an absorbing polarizer and multiple reflective polarizers, including at least one collimating reflective polarizer are described. Such polarizer stacks are capable of emitted light that is both collimated and color neutral. Backlights incorporating such polarizer stacks are also described.
Abstract:
A hybrid polarizer includes an absorbing element having a first major surface and a second major surface. The hybrid polarizer also includes a first birefringent reflective polarizer disposed on the first major surface of the absorbing element, the first birefringent reflective polarizer having a first pass axis and a first block axis. The hybrid polarizer further includes a second birefringent reflective polarizer disposed on the second major surface of the absorbing element, the second reflective polarizer having a second pass axis and a second block axis.
Abstract:
Certain filters have been found to enhance color discrimination for individuals with color vision deficiency (CVD), aka color-blind individuals. The filters generally include a multilayer optical film with a strong, narrow reflection band in part of the green region of the visible spectrum. The film has an average internal transmission from 420-680 nm of at least 50%, 60%, or 70%, and an average internal transmission≤10%, 5%, 2%, or 1% over a 10 nm wide range that includes 550 nm associated with a reflection band having a width (FWHM) of 60 nm or 50 nm or less. The filter may include a magenta layer disposed on a viewer side of the multilayer optical film to reduce glare, the magenta layer selectively absorbing green light. The magenta layer combined with the multilayer optical film may provide a rejection band whose width (FWHM) is 60 nm or less.
Abstract:
A hybrid polarizer includes an absorbing element having a first major surface and a second major surface. The hybrid polarizer also includes a first birefringent reflective polarizer disposed on the first major surface of the absorbing element, the first birefringent reflective polarizer having a first pass axis and a first block axis. The hybrid polarizer further includes a second birefringent reflective polarizer disposed on the second major surface of the absorbing element, the second reflective polarizer having a second pass axis and a second block axis.
Abstract:
Optical lenses are described and include a polymeric interference filter disposed on a curved polymeric substrate. The optical lens has an average light transmission of less than 2% across a band of blue light from 400 nm to at least 420 and up to 440 nm and substantially transmits blue light greater than 450 nm.
Abstract:
An optical film includes a polymeric bandstop filter reflecting a band of blue light in a range from 440 nm to 480 nm a polymeric bandstop filter reflecting a band of blue light in a range from 440 nm to 480 nm and transmitting greater than 50% of blue light at a wavelength of 10 nm longer than a long wavelength band edge and at a wavelength of 10 nm shorter than a short wavelength band edge.
Abstract:
Multilayer reflecting polarizing films are disclosed having increased in-plane refractive index differences between adjacent microlayers along both the pass and block axis, and having negative refractive index differences between adjacent microlayers along the thickness or z-axis. Major front and back surfaces of the film exposed to air provide a Fresnel reflectivity component to the pass axis reflectivity, and the microlayers provide a microlayer component to the pass axis reflectivity, such microlayer component preferably having a reflectivity of p-polarized light that increases with incidence angle faster than the Fresnel reflectivity component decreases so as to substantially avoid off-axis gain peaks for p-polarized light. The films preferably utilize a relatively small total number of microlayers, arranged in a single coherent stack with monotonic optical repeat unit thickness profile, and at least some microlayers preferably include polyethylene naphthalate or a copolymer thereof.
Abstract:
Certain filters have been found to enhance color discrimination for individuals with color vision deficiency (CVD), aka color-blind individuals. The filters generally include a multilayer optical film with a strong, narrow reflection band in part of the green region of the visible spectrum. The film has an average internal transmission from 420-680 nm of at least 50%, 60%, or 70%, and an average internal transmission ≦10%, 5%, 2%, or 1% over a 10 nm wide range that includes 550 nm associated with a reflection band having a width (FWHM) of 60 nm or 50 nm or less. The filter may include a magenta layer disposed on a viewer side of the multilayer optical film to reduce glare, the magenta layer selectively absorbing green light. The magenta layer combined with the multilayer optical film may provide a rejection band whose width (FWHM) is 60 nm or less.