Abstract:
The examples herein relate to assembly techniques and structures for an electrowetting cell, e.g. a fluid lens, a fluid prism or a single cell that may support both variable lens and variable prism functions. The resulting cell structure, for example, may support both beam shaping and steering functions, e.g. supporting use of the same electrowetting cell structure for a wider variety of optical processing applications. The resulting cell may be used in combination with an optical/electrical transducer or an array of cells may be used with a transducer in systems for a various light input and/or output applications.
Abstract:
The examples relate to various implementations of a software configurable luminaire and a transparent display device for use in such a luminaire. The luminaire is able to generate light sufficient to provide general illumination of a space in which the luminaire is installed and provide an image display. The general illumination is provided by additional light sources and/or improved display components of the transparent display device.
Abstract:
For a luminaire offering both illumination and display functionality, control strategies coordinate illumination/image output so as to mitigate interference of the illumination light output with aspects of the displayed image light output. In one example, when displaying a selected image with one or more white regions in the image, a sufficient number of selected white illumination emitters can be ON or operating in a low power state in the white regions while the rest of the luminaire output area can display the non-white elements of the image with aligned illumination emitters turned OFF. In another example, an image is displayed in a selected region of the luminaire output while illumination emitters within the area displaying the image are OFF or operating in a low power state, but illumination emitters along other parts of the luminaire output are turned ON.
Abstract:
The examples relate to implementations of an apparatus and a luminaire that use isolated display and lighting portions and optical passages for backlit general illumination through the display. The apparatus includes a general illumination light source, an optical coupling, and an optical array. A luminaire includes the apparatus and a display light board. The display light board may include display light emitters and transparent regions. The transparent regions enable general illumination light to pass through the display light board. The general illumination light source outputs general illumination light that is directed by the optical coupling toward the optical array. The optical array has optical passages and optical array supports. The optical array supports frame the display light emitters and the optical passages channel the directed general illumination light from the optical coupling around display light emitters framed near the optical array supports. Near-field shadow regions are formed under the display light emitters.
Abstract:
The examples relate to various implementations of a software configurable lighting device. Such a device, in the examples, includes a light source and an optical modulator and may include a programmable controller. The device is configurable by software, e.g. configuration information and/or programming for processing of that information to emulate a lighting distribution of a selected one of a variety of different lighting devices.
Abstract:
The examples relate to various implementations of a single software configurable lighting device, installed as a panel, that offers the capability to appear like and emulate a variety of different lighting devices. Emulation includes the appearance of the lighting device as installed in the wall or ceiling, possibly both when lighting and when not lighting, as well as light output distribution, e.g. direction and/or beam shape. Specific examples in this case combine a display device with a spatial light modulator or use angled light sources in each pixel, possibly with a settable beam shaper associated with one or more of the emission pixels.