-
公开(公告)号:US11544495B2
公开(公告)日:2023-01-03
申请号:US16926511
申请日:2020-07-10
Applicant: Adobe Inc.
Inventor: Mayank Singh , Balaji Krishnamurthy , Nupur Kumari , Puneet Mangla
Abstract: Embodiments are disclosed for training a neural network classifier to learn to more closely align an input image with its attribution map. In particular, in one or more embodiments, the disclosed systems and methods comprise receiving a training image comprising a representation of one or more objects, the training image associated with at least one label for the representation of the one or more objects, generating a perturbed training image based on the training image using a neural network, and training the neural network using the perturbed training image by minimizing a combination of classification loss and attribution loss to learn to align an image with its corresponding attribution map.
-
公开(公告)号:US11308353B2
公开(公告)日:2022-04-19
申请号:US16661617
申请日:2019-10-23
Applicant: Adobe Inc.
Inventor: Mayank Singh , Puneet Mangla , Nupur Kumari , Balaji Krishnamurthy , Abhishek Sinha
Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for training a classification neural network to classify digital images in few-shot tasks based on self-supervision and manifold mixup. For example, the disclosed systems can train a feature extractor as part of a base neural network utilizing self-supervision and manifold mixup. Indeed, the disclosed systems can apply manifold mixup regularization over a feature manifold learned via self-supervised training such as rotation training or exemplar training. Based on training the feature extractor, the disclosed systems can also train a classifier to classify digital images into novel classes not present within the base classes used to train the feature extractor.
-
公开(公告)号:US20210319473A1
公开(公告)日:2021-10-14
申请号:US17355907
申请日:2021-06-23
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US20200053403A1
公开(公告)日:2020-02-13
申请号:US16057729
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , G06N99/00 , H04N21/475 , H04N21/258 , H04N21/2668
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US20200051118A1
公开(公告)日:2020-02-13
申请号:US16057743
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US20220138897A1
公开(公告)日:2022-05-05
申请号:US17088120
申请日:2020-11-03
Applicant: ADOBE INC.
Inventor: Mayank Singh , Parth Patel , Nupur Kumari , Balaji Krishnamurthy
Abstract: This disclosure includes technologies for image processing, particularly for image generation and editing in a configurable semantic direction. A generative adversarial network is trained with an auxiliary network with an auxiliary task that is designed to disentangle the latent space of the generative adversarial network. Resultantly, a new type of GAN is created to improve image generation or editing in both conditional and unconditional settings.
-
公开(公告)号:US11295491B2
公开(公告)日:2022-04-05
申请号:US16850677
申请日:2020-04-16
Applicant: Adobe Inc.
Inventor: Nupur Kumari , Piyush Gupta , Akash Rupela , Siddarth R , Balaji Krishnamurthy
Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
-
公开(公告)号:US11107115B2
公开(公告)日:2021-08-31
申请号:US16057743
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
IPC: G06Q30/00 , G06Q30/02 , G06N20/00 , G05B19/418
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US20210124993A1
公开(公告)日:2021-04-29
申请号:US16661617
申请日:2019-10-23
Applicant: Adobe Inc.
Inventor: Mayank Singh , Puneet Mangla , Nupur Kumari , Balaji Krishnamurthy , Abhishek Sinha
Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for training a classification neural network to classify digital images in few-shot tasks based on self-supervision and manifold mixup. For example, the disclosed systems can train a feature extractor as part of a base neural network utilizing self-supervision and manifold mixup. Indeed, the disclosed systems can apply manifold mixup regularization over a feature manifold learned via self-supervised training such as rotation training or exemplar training. Based on training the feature extractor, the disclosed systems can also train a classifier to classify digital images into novel classes not present within the base classes used to train the feature extractor.
-
公开(公告)号:US10609434B2
公开(公告)日:2020-03-31
申请号:US16057729
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/2668 , H04N21/258 , H04N21/475 , G06N20/00 , H04N21/81 , G06Q30/02
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
-
-
-
-
-
-
-
-