Abstract:
The present disclosure is directed toward systems and methods for tracking objects in videos. For example, one or more embodiments described herein utilize various tracking methods in combination with an image search index made up of still video frames indexed from a video. One or more embodiments described herein utilize a backward and forward tracking method that is anchored by one or more key frames in order to accurately track an object through the frames of a video, even when the video is long and may include challenging conditions.
Abstract:
In various implementations, an abstraction is generated from an asset associated with an asset-modifying workflow. The abstraction can be embedded into an activity stream generated from an asset-modification application and communicated to a remote server device for collection and analysis. The remote server device, upon receiving at least the abstraction, can determine a contextual identifier for association with the abstraction and the asset associated with the asset-modifying workflow. The remote server device can conduct usage analysis on data received from the activity stream in association with the contextual identifier, and further send a signal to the asset-modification application to customize the workflow based on the contextual identifier determined to be associated with the abstraction and asset.
Abstract:
A convolutional neural network (CNN) is trained for font recognition and font similarity learning. In a training phase, text images with font labels are synthesized by introducing variances to minimize the gap between the training images and real-world text images. Training images are generated and input into the CNN. The output is fed into an N-way softmax function dependent on the number of fonts the CNN is being trained on, producing a distribution of classified text images over N class labels. In a testing phase, each test image is normalized in height and squeezed in aspect ratio resulting in a plurality of test patches. The CNN averages the probabilities of each test patch belonging to a set of fonts to obtain a classification. Feature representations may be extracted and utilized to define font similarity between fonts, which may be utilized in font suggestion, font browsing, or font recognition applications.
Abstract:
A system may be configured as an image recognition machine that utilizes an image feature representation called local feature embedding (LFE). LFE enables generation of a feature vector that captures salient visual properties of an image to address both the fine-grained aspects and the coarse-grained aspects of recognizing a visual pattern depicted in the image. Configured to utilize image feature vectors with LFE, the system may implement a nearest class mean (NCM) classifier, as well as a scalable recognition algorithm with metric learning and max margin template selection. Accordingly, the system may be updated to accommodate new classes with very little added computational cost. This may have the effect of enabling the system to readily handle open-ended image classification problems.
Abstract:
Systems and methods are provided for providing learned, piece-wise patch regression for image enhancement. In one embodiment, an image manipulation application generates training patch pairs that include training input patches and training output patches. Each training patch pair includes a respective training input patch from a training input image and a respective training output patch from a training output image. The training input image and the training output image include at least some of the same image content. The image manipulation application determines patch-pair functions from at least some of the training patch pairs. Each patch-pair function corresponds to a modification to a respective training input patch to generate a respective training output patch. The image manipulation application receives an input image generates an output image from the input image by applying at least some of the patch-pair functions based on at least some input patches of the input image.
Abstract:
Font graphs are defined having a finite set of nodes representing fonts and a finite set of undirected edges denoting similarities between fonts. The font graphs enable users to browse and identify similar fonts. Indications corresponding to a degree of similarity between connected nodes may be provided. A selection of a desired font or characteristics associated with one or more attributes of the desired font is received from a user interacting with the font graph. The font graph is dynamically redefined based on the selection.
Abstract:
In various implementations, a personal asset management application is configured to perform operations that facilitate the ability to search multiple images, irrespective of the images having characterizing tags associated therewith or without, based on a simple text-based query. A first search is conducted by processing a text-based query to produce a first set of result images used to further generate a visually-based query based on the first set of result images. A second search is conducted employing the visually-based query that was based on the first set of result images received in accordance with the first search conducted and based on the text-based query. The second search can generate a second set of result images, each having visual similarity to at least one of the images generated for the first set of result images.
Abstract:
Techniques are disclosed for indexing and searching high-dimensional data using inverted file structures and product quantization encoding. An image descriptor is quantized using a form of product quantization to determine which of several inverted lists the image descriptor is to be stored. The image descriptor is appended to the corresponding inverted list with a compact coding using a product quantization encoding scheme. When processing a query, a shortlist is computed that includes a set of candidate search results. The shortlist is based on the orthogonality between two random vectors in high-dimensional spaces. The inverted lists are traversed in the order of the distance between the query and the centroid of a coarse quantizer corresponding to each inverted list. The shortlist is ranked according to the distance estimated by a form of product quantization, and the top images referred to by the ranked shortlist are reported as the search results.
Abstract:
A system is configured to annotate an image with tags. As configured, the system accesses an image and generates a set of vectors for the image. The set of vectors may be generated by mathematically transforming the image, such as by applying a mathematical transform to predetermined regions of the image. The system may then query a database of tagged images by submitting the set of vectors as search criteria to a search engine. The querying of the database may obtain a set of tagged images. Next, the system may rank the obtained set of tagged images according to similarity scores that quantify degrees of similarity between the image and each tagged image obtained. Tags from a top-ranked subset of the tagged images may be extracted by the system, which may then annotate the image with these extracted tags.
Abstract:
A system and method for distributed similarity learning for high-dimensional image features are described. A set of data features is accessed. Subspaces from a space formed by the set of data features are determined using a set of projection matrices. Each subspace has a dimension lower than a dimension of the set of data features. Similarity functions are computed for the subspaces. Each similarity function is based on the dimension of the corresponding subspace. A linear combination of the similarity functions is performed to determine a similarity function for the set of data features.