Abstract:
Resource management techniques for shared resources in a distributed system are described. Clients and servers may exchange messages according to an asynchronous messaging protocol that does not guarantee delivery or ordering of messages. A client may send a resource request message including a client timestamp and a measure of client resource demand. The server may allocate a grant of the resource to the client in a manner that prevents resource overload, and indicate the grant to the client via a message including a logical timestamp, the amount of resource granted, the client's original timestamp, and a grant expiration time. The server may acknowledge the grant and cooperatively use the resource in accordance with the grant's terms.
Abstract:
Dynamic application instance discovery and state management within a distributed system. A distributed system may implement application instances configured to perform one or more application functions within the distributed system, and discovery and failure detection daemon (DFDD) instances, each configured to store an indication of a respective operational state of each member of a respective group of the number of application instances. Each of the DFDD instances may repeatedly execute a gossip-based synchronization protocol with another one of the DFDD instances, where execution of the protocol between DFDD instances includes reconciling differences among membership of the respective groups of application instances. A new application instance may be configured to notify a particular DFDD instance of its availability to perform an application function. The particular DFDD instance may be configured to propagate the new instance's availability to other DFDD instances via execution of the synchronization protocol, without intervention on the part of the new application instance.
Abstract:
Techniques are described for facilitating interactions between computing systems, such as by performing transactions between parties that are automatically authorized via a third-party transaction authorization system. In some situations, the transactions are programmatic transactions involving the use of fee-based Web services by executing application programs, with the transaction authorization system authorizing and/or providing payments in accordance with private authorization instructions previously specified by the parties. The authorization instructions may include predefined instruction rule sets that regulate conditions under which a potential transaction can be authorized, with the instruction rule sets each referenced by an associated reference token. After one or more of the parties to a potential transaction supply reference tokens for the parties, the transaction authorization system can determine whether to authorize the transaction based on whether the instruction rule sets associated with the reference tokens are compatible or otherwise satisfied.
Abstract:
Techniques are described for facilitating interactions between computing systems, such as by performing transactions between parties that are automatically authorized via a third-party transaction authorization system. In some situations, the transactions are programmatic transactions involving the use of fee-based Web services by executing application programs, with the transaction authorization system authorizing and/or providing payments in accordance with private authorization instructions previously specified by the parties. The authorization instructions may include predefined instruction rule sets that regulate conditions under which a potential transaction can be authorized, with the instruction rule sets each referenced by an associated reference token. After one or more of the parties to a potential transaction supply reference tokens for the parties, the transaction authorization system can determine whether to authorize the transaction based on whether the instruction rule sets associated with the reference tokens are compatible or otherwise satisfied.