Abstract:
Systems, methods, and computer-readable medium are provided for managing connections of user devices. For example, two source devices may be configured to maintain a data stream with one another. The data stream may enable the two source devices to identify one or more connections between each other and at least a third device. In response to receiving an event that indicates content to be provided to the third device, the data stream may be used by the source devices to configure their network connections with the third device.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
Certain embodiments of the present invention provide the ability to control a camera from a wearable mechanism device, such as a watch, pendant or other device with its own limited display. Certain embodiments of the present invention provide a wearable mechanism device for remotely controlling a camera with an intuitive user interface and sequencing of interface options. In one embodiment, the display on the wearable mechanism changes before a picture or video is taken with the electronic camera. Certain embodiments of the present invention provide the ability to partially control a camera from the wearable mechanism device, providing split control.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
When a new version of a first program is to be installed on a first device, metadata supplied to that device specifies which versions of a second program stored on a second device are compatible with the new version. The first device uses this metadata to determine a compatibility classification that indicates how compatible the current version of the second program and the new version of the first program are, and transitions to a state representative of this compatibility classification. A process executing on the first device receives messages from applications executing on the first device. The process reads mappings between these applications and the message types these applications send. The process forwards an application's message to the second device if the application sends a message type allowable in the first device's state. Otherwise, the process queues that message at least until the first device transitions to a different state.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
Certain embodiments of the present invention can detect and evaluate new messages at a coordinating device to determine whether to forward the message to a wearable device. In this manner, a server can reduce a number of devices that it is to communicate a message to, while still allowing the message to be availed to multiple devices. Further, certain embodiments relate to coordinating alerts (e.g., audio or haptic alerts) to reduce redundant alerts of a single message amongst spatially clustered devices.
Abstract:
The present disclosure relates to aggregating and sharing wellness data. The wellness data can be received by a user device from any number of sensors external or internal to the user device, from a user manually entering the wellness data, or from other users or entities. The user device can securely store the wellness data on the user device and transmit the wellness data to be stored on a remote database. A user of the device can share some or all of the wellness data with friends, relatives, caregivers, healthcare providers, or the like. The user device can further display a user's wellness data in an aggregated view of different types of wellness data. Wellness data of other users can also be viewed if authorizations from those users have been received.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between wearable items that have been paired or associated with an electronic device, such as a smartphone, are described. In one embodiment, the wearable items automatically detect a removal of a first wearable item from a user's body and an attachment of a second wearable item to the user's body. Messages from the wearable items are transmitted to the electronic device to allow the electronic device to switch the active wearable item from the first wearable item to the second wearable item. The switch can occur while the electronic device is in a locked state, and the electronic device can synchronize the second wearable item with data received from the first wearable item. Other embodiments are also described.