Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
An electronic device may be provided with electronic components such as mapping circuitry for measuring distances, areas, volumes or other properties of objects in the surrounding environment of the device. The mapping circuitry may include a laser sensor and device position detection circuitry. The device may include processing circuitry configured to gather laser sample data and device position data using the laser sensor and the device position detection circuitry. The laser sample data and the device position data may be gathered while pointing a laser beam generated with a laser in the laser sensor at one or more sample points on a surface such as a surface of a wall. By tracking the device position and orientation using the device position detection circuitry, the objects may be mapped while gathering laser sample data from any position with respect to the object.
Abstract:
An electronic device may contain electrical components mounted on one or more substrates such as printed circuit boards. During a drop event, the printed circuit boards and components may be subjected to stresses. Strain gauges may be formed from metal traces embedded within dielectric layers in the printed circuit boards. The strain gauges may be used to make stress measurements at various locations on the boards. Stress data may be collected in response to data from an accelerometer indicating that the device has been dropped. Stress data collection may be halted in response to determining that the device has struck an external surface. Impact may be detected using accelerometer data, strain gauge output, or other sensor data. Stress data may be analyzed by the electronic device or external equipment.
Abstract:
An electronic device includes a tactile switch assembly. The tactile switch assembly includes a tactile switch structure. A grounding structure can be included in an electrostatic discharge path in the tactile switch structure. The grounding structure can result in a shorter electrostatic discharge path that minimizes damage caused by an electrostatic discharge event. Additionally, different grounding connectors are disclosed that can attach to a grounded component in the electronic device and to a tactile switch bracket associated with the tactile switch assembly. The grounding connector provides a grounding connection to the tactile switch bracket.
Abstract:
An electronic device has a force sensor that determines a measure of applied force from a user contacting a cover glass of the device. In one embodiment, a frame at least partially encloses an interior of the electronic device and has an open end. A cover glass covers the open end of the frame and is movably connected to the frame to allow movement of the cover glass in response to one or more forces applied to an external surface of the cover glass. A plurality of strain probes is positioned under the cover glass, between the cover glass and the frame, and is arranged to output a plurality of strain signals responsive to the one or more forces applied to the cover glass. A force processing module is configured to at least calculate an amount of force applied to the cover glass based on the plurality of stain signals.
Abstract:
Connectors that may provide an improved reliability by having a reduced tendency for damage to their contacts and may have a reduced size and complexity. One example may provide a magnetic connector having a magnetic pin. The magnetic pin may have a plunger that may remain protected in a barrel and housing when the magnetic connector is not engaged with a corresponding connector. When the magnetic connector is engaged with a corresponding connector, the plunger may be magnetically attracted to a corresponding contact on the corresponding connector and may emerge from the barrel or housing to make an electrical connection between the plunger and the corresponding contact.
Abstract:
Systems and methods for forming button assemblies for electronic devices are disclosed. According to some embodiments, the button assemblies include one or more sound improvement features to improve the sound that the button assemblies make when pressed by users of the electronic devices. According to some embodiments, the button assemblies include shims that provide proper alignment of the various components of the button assemblies and to accommodate any tolerance stack up of the various components of the button assemblies. The shims can include alignment features to prevent the shims from shifting within the button assemblies. According to some embodiments, thicknesses of the shims are customized to accommodate varying tolerance stack ups of the components of the button assemblies. In some embodiments, the button assemblies include a combination of sound improvement features and shims.
Abstract:
An electronic device may contain electrical components mounted on one or more substrates such as printed circuit boards. During a drop event, the printed circuit boards and components may be subjected to stresses. Strain gauges may be formed from metal traces embedded within dielectric layers in the printed circuit boards. The strain gauges may be used to make stress measurements at various locations on the boards. Stress data may be collected in response to data from an accelerometer indicating that the device has been dropped. Stress data collection may be halted in response to determining that the device has struck an external surface. Impact may be detected using accelerometer data, strain gauge output, or other sensor data. Stress data may be analyzed by the electronic device or external equipment.