Abstract:
Aspects of the subject disclosure include, for example, embodiments that include determining a content context of a first segment of content being presented by a media processor at a display to an audience. Further embodiments include determining an expected audience reaction according to the content context of the first segment, and receiving sensor data captured from a sensor device in proximity to the audience where the sensor data is indicative of a sensed audience reaction to the first segment of the content. Additional embodiments include comparing the sensed audience reaction with the expected audience reaction to determine a level of interest in the first segment, and adjusting a second segment of the content according to the level of interest to generate an adjusted second segment displayable at the display. Other embodiments are disclosed.
Abstract:
Optimizing neighbor cell relationships for improving handover performance by interpreting handover failures is presented herein. A method can include receiving data representing a time series of failures of outgoing handovers corresponding to a wireless access point device, and determining, based on a determined condition corresponding to a metric, that a source cell of the wireless access point device is associated with an anomalous cell relation corresponding to the time series of the failures of the outgoing handovers in response to quantifying the time series based on the metric. In various examples, the quantifying can include quantifying the time series with respect to: a volume of the failures during a period of time, an entropy calculated on a probability distribution of the failures by determined relations between the source cell and target cells, and/or an entropy calculated on a probability distribution of determined outgoing handover outcomes.
Abstract:
Mobility management may be utilized to effectuate handover and route packets of information to one or more radio access technologies and/or cells/access points based on network, UE conditions, device location, and/or network entity location. Packet routes, device addresses, handover functions, dynamically may be adjusted based on the best radio technology, cell layer, service provider specified criteria, or the like.
Abstract:
Intelligent traffic routing may be utilized to route packets of information to one or more radio access technologies and/or cells/access points based on network and/or UE conditions. Packet routes dynamically may be adjusted based on the best radio technology, cell layer, service provider specified criteria, or the like. In an example configuration, intelligent traffic routing may be SDN based utilize a simple Internet protocol.
Abstract:
Explicit congestion notification (ECN) data that is utilized in a core portion of a cellular communication network has known issues associated with a first use scenario and an infrequent use scenario. A probe comprising probe data and a data structure for storing certain ECN data can be transmitted in order to mitigate these issues. Transmitting the probe in response to a communication session being established with a device of a network can mitigate the first use issue. Transmitting the probe in response to expiration of a probe timer in connection with a network traffic idle period can mitigate the infrequent use scenario.
Abstract:
Optimizing neighbor cell relationships for improving handover performance by interpreting handover failures is presented herein. A method can include receiving data representing a time series of failures of outgoing handovers corresponding to a wireless access point device, and determining, based on a determined condition corresponding to a metric, that a source cell of the wireless access point device is associated with an anomalous cell relation corresponding to the time series of the failures of the outgoing handovers in response to quantifying the time series based on the metric. In various examples, the quantifying can include quantifying the time series with respect to: a volume of the failures during a period of time, an entropy calculated on a probability distribution of the failures by determined relations between the source cell and target cells, and/or an entropy calculated on a probability distribution of determined outgoing handover outcomes.
Abstract:
Explicit congestion notification (ECN) data that is utilized in a core portion of a cellular communication network has known issues associated with a first use scenario and an infrequent use scenario. A probe comprising probe data and a data structure for storing certain ECN data can be transmitted in order to mitigate these issues. Transmitting the probe in response to a communication session being established with a device of a network can mitigate the first use issue. Transmitting the probe in response to expiration of a probe timer in connection with a network traffic idle period can mitigate the infrequent use scenario.
Abstract:
Intelligent traffic routing may be utilized to route packets of information to one or more radio access technologies and/or cells/access points based on network and/or UE conditions. Packet routes dynamically may be adjusted based on the best radio technology, cell layer, service provider specified criteria, or the like. In an example configuration, intelligent traffic routing may be SDN based utilize a simple Internet protocol.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a Power Over Ethernet (PoE) device (PD) having a controller to receive signals over a first cable having twisted pair wires from at least one of a network element and a gateway where the network element is associated with a service provider where the gateway is associated with a premises and where the service provider provides network communications to the premises, adjust the signals, transmit the adjusted signals over a second cable having twisted pair wires to at least one of the network element and the gateway, and receive power from at least one of the network element and the gateway, where the power is received over at least one of the first and second cables, where the power is received according to PoE protocol, and where the PD is positioned between the network element and the gateway. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, partitioning content of a plurality of media streams into media segments to generate a plurality of media segments associated with a media event, determining a first set of media segments from the plurality of media segments according to social media information associated with a social media group, transmitting the first set of media segments to first user equipment of a first member of the social media group, detecting a change in membership of the social media group, updating the first set of media segments according to the change in membership of the social media group to generate a modified set of media segments, and transmitting the modified set of media segments to the first user equipment for presentation at the first user equipment. Other embodiments are disclosed.