摘要:
A problem with mobile radio systems is the potentially harmful interference they may cause to other electronic equipment. Such interference can be dangerous and even life-threatening in hospitals and aircraft. Interference to automobile electronic braking systems, air bag actuators, or train system controls are examples of other areas where radio system interference must be prevented to preserve the safety of operators and passengers. The present invention provides a system whereby mobile radios, e.g. cellular phones, can be operated safely in regions where interference could cause serious problems or can be prevented from operating. The mobile radios are provided with a low power mode of operation and are commanded, via their signalling channels, to operate in the low power mode when within range of a low power signal from a base station within a protected area. In some areas where it may be undesirable for the mobile radio to operate, even at low power levels, the base station may broadcast an inhibiting signal which will instruct the mobile radio not to operate its transmitter while in the area.
摘要:
Packets in a multi-hop wireless network are routed based on the available link throughputs, network node congestion and the connectivity of the network in a manner that minimizes the use of radio resources and minimizes delay for packets in multi-hop system. The routing method also avoids congestion in the access network, especially near the network access points as provided by network access nodes. Each wireless network node maintains a link table for storing link conditions and associated route costs. Packets are routed according to the low cost route. Subsequent wireless network nodes evaluate whether a lower cost route is available and, if so, route the data packet according to the lower cost route. Every wireless network node transmits the data packet, a specified route and a time stamp indicated a time of the last data entry in the link table that was used to calculate the low cost route.
摘要:
According to an aspect of the present invention one or more radio units of a wireless device are used to measure or detect clues about the radio propagation environment and type of space that surrounds a wireless device. From the measurements, the wireless device may determine the type of location that it is located within, whether that is simply a determination between inside and outside or a more complex determination of the type of building or space that the wireless device is located within. In either case, this determination can be used to automatically change/adjust the radio system operation parameters the wireless device operates in accordance with. With the type of location determined, a wireless device may then automatically select the appropriate radio system operation parameters for the type of location that it is in and the corresponding regulations that apply.
摘要:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
摘要:
A method and system for detecting RADAR signals in a radio communications system is provided. A detection system includes a pulse examination. Based on the result from the examination/analysis, a RADAR pulse is detected. The examination/analysis may include a correlator for correlating received pulses with themselves or samples previously obtained.
摘要:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
摘要:
A method and system for detecting RADAR signals in a radio communications system is provided. A detection system includes a pulse examination. Based on the result from the examination/analysis, a RADAR pulse is detected. The examination/analysis may include a correlator for correlating received pulses with themselves or samples previously obtained.
摘要:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
摘要:
A wireless communication system and method for a network having a tree topology. An initial path from a base station to an end relay node is selected. The path selection includes an active communication path and a redundant communication path. The path selection is based on at least one policy factor. The at least one policy factor is monitored and the path is updated based on a change to the monitored at least one policy factor.
摘要:
A method and transceiver in a secondary system for utilizing channel bandwidths allocated to a primary system. A secondary system transceiver receives a primary system signal, re-transmits a delayed version of the primary system signal, and communicates with secondary system equipment utilizing secondary system signals within at least part of a bandwidth of at least one channel of the primary system. The re-transmission of the primary system signal allows the use of primary system channels by the secondary system without adversely affecting the primary or secondary system users.