摘要:
A gas sensor control device is disclosed as including a sensor cell having a negative terminal, to which a current-voltage converter is connected, and a differential amplifier is connected to the current-voltage converter to provide a current measured result applied to a microcomputer. The current-voltage converter has an opposite-to-sensor terminal to which another differential amplifier is connected. A sensor-side terminal of the current-voltage converter and another differential amplifier is electrically connected to each other via an electric pathway having a sensor-current flow disabling pathway in which a switch circuit is provided. Closing the switch circuit allows a potential difference between both terminals of the current-voltage converter is zeroed. With the switch circuit closed, the microcomputer calculates an element current correcting value, while detecting an electromotive force of the sensor cell based on which a failure is determined.
摘要:
A carbon quantity detecting sensor for continuously detecting a carbon quantity of measuring gases with increased precision using a simplifier structure is disclosed. The sensor includes at least a proton conductive body composed of a solid electrolyte body having a proton conductivity, an electrode pair composed of a measuring electrode and a reference electrode formed on the proton conductive body at opposing surfaces thereof respectively, and a power source for applying at least one of a given current or a given voltage across the electrode pair. The measuring gases electrode is exposed to the measuring gases and the reference electrode is isolated from the measuring gases. This enables the carbon quantity of measuring gases to be detected with increased precision for a long period of time without causing a carbon component to accumulate on a surface of the measuring electrode due to an electrochemical reaction.
摘要:
A hydrogen sensor which may be employed in an overcharge/overdischarge detector for a battery and a hydrogen leakage detector for a fuel cell is provided. The hydrogen sensor includes a sensor element and a diffused resistor member. The gas to be measured passes through the diffused resistor member and reaches the sensor element. The sensor element outputs a signal indicative of the concentration of hydrogen contained in the gas as a function of a decrease in concentration of oxygen contained in the gas arising from reaction of the hydrogen on the oxygen. The diffused resistor member is so designed that speeds of diffusion of the hydrogen and the oxygen when passing through the diffused resistor member are different from each other for increasing the sensitivity of measurement of the concentration of hydrogen.
摘要:
A fault detecting apparatus for a gas concentration sensor is provided. The apparatus includes a storage device and a fault detecting circuit. The storage device stores therein fault detectable conditions in which preselected different types of faults of the gas concentration sensor are allowed to be detected, respectively. The fault detecting circuit works to detect a selected one of the faults stored in said storage device. When one of the fault detectable conditions is encountered during operation of the gas concentration sensor, the fault detecting circuit initiates detection of a corresponding one of the faults based on an output of the gas concentration sensor, thereby enabling the fault detecting circuit to identify the type of one of the faults to be detected correctly.
摘要:
A gas sensing element has at least a sensor cell consisting of a measured gas side electrode positioned in a measured gas chamber, a reference electrode being operative association with the measured gas side electrode, and a solid electrolytic substrate having surfaces on which the measured gas side electrode and the reference electrode are formed. The measured gas side electrode of the sensor cell contains at least one additive selected from the group consisting of Au, Ag, Cu, and Pb by an amount of 0.01 wt % to 2.0 wt % (external wt %) when an overall amount of the measured gas side electrode is 100 wt %.
摘要:
A gas sensor consists of a pump cell, a monitor cell, and a sensor cell. The sensor cell is supplied with power to produce a sensor cell current. The monitor cell is supplied with power to produce a monitor cell current. A sensor cell and a monitor cell current detector are disposed between a sensor cell electrode exposed to a gas cavity and a sensor cell power supply and between a monitor cell electrode exposed to the gas cavity and a monitor cell power supply, thereby enabling the sensor cell current and the monitor cell current to be measured without addition of electric noises arising from current components flowing from the monitor cell to the sensor cell and vice versa.
摘要:
An air-fuel ratio detecting element is composed of an oxygen pump portion and an oxygen sensor portion which are provided on a single solid electrolyte sheet, a heating element, and a spacer. The oxygen pump portion is composed of a pair first of electrodes provided on opposite sides of the solid electrolyte sheet, and a communication hole which is formed through the solid electrolyte sheet and the electrodes. Electrodes are disposed on the solid electrolyte sheet on the same side as the second electrode, whereby the oxygen sensor portion is formed. The spacer has an opening and a slit-like opening. The heating element 4, the spacer, and the solid electrolyte sheet are stacked from bottom to top, and then the stacked assembly is baked. In this case, they are stacked such that the opening faces the first electrodes and the second electrode. By disposing the oxygen pump portion and the oxygen sensor portion on the same solid electrolyte sheet, structure can be made simpler compared with a conventional air-fuel ratio detecting element in which a solid electrolyte sheet is used for each of an oxygen pump portion and an oxygen sensor portion.
摘要:
A gas sensor element has a first cell, a second cell, and a solid electrolyte layer having proton conductivity commonly used by the first cell and the second cell. The first cell has a first cathode and a first anode exposed to the target detection gas containing hydrogen atoms. The second cell has a second anode, a second cathode, and a shield layer with which the second anode is covered. A voltage is supplied to the first and second cells. A gas concentration of the target detection gas is calculated on the basis of a difference between a current of the first cell and a current of the second cell because the current in the first cell is a sum of proton conductivity current and an electron conductivity current. The current in the second cell is an electron conductive current only.
摘要:
A particulate sensing element that detects a concentration of electrically conductive particulates PM in a gas to be measured includes a sensing portion exposed to the gas to be measured in which a pair of sensing electrodes that face each other formed with a predetermined gap therebetween on a surface of an electrically insulating heat resistant base plate, and a heating element that heats the sensing portion to a predetermined temperature, wherein a catalyst layer that can oxidize the electrically conductive particulates PM is formed at least on a part of a portion except the sensing portion exposed to the gas to be measured.
摘要:
A gas sensor element is designed to determine the concentration of a selected component contained in gas and includes a sensor cell. The sensor cell is equipped with two electrodes one of which is exposed to a gas chamber into which the gas flows from outside the gas sensor element. The electrodes connect with leads extending to external terminals exposed to the atmospheric air. One of the leads connecting with one of the electrodes exposed to the gas chamber is made of material which includes a mixture of a metallic composition and a ceramic composition and contains 7% or less by weight of the ceramic composition based on a total weight of the mixture. This results in a decrease in porosity of the lead, which reduces the intrusion of oxygen gas into the gas chamber, thereby enhancing the accuracy in determining the concentration of the selected component of the gas.