Abstract:
A process is described for making sterically stabilized non-aqueous dispersions of composite polymer microparticles, in which (1) monomers including at least one crosslinking monomer are polymerized in an aqueous medium at a temperature at least 10.degree. higher than the glass transition temperature of the polymer to be formed, in the presence of a block or graft copolymer stabilizing agent, under conditions such that there is at no time present a separate monomer phase, (2) further monomers, not including any crosslinking monomer, are polymerized in the dispersion thus obtained, the presence of a separate monomer phase again being avoided, and (3) the microparticles are transferred from the resulting dispersion into a non-aqueous medium which is a solvent for the non-crosslinked polymer generated in (2). The microparticles are of value for incorporation into coating compositions the main film-forming constituent of which is compatible with the non-crosslinked component of the particles.
Abstract:
Crosslinked addition polymer microparticles are produced by dispersion polymerization of monomers in an aliphatic hydrocarbon liquid in the presence of a dispersion stabilizer and also of a specified type of amino resin which is insoluble in the hydrocarbon liquid, at least one of the monomers polymerized carrying a group which can react with the amino resin under the conditions of polymerization. Coating compositions having improved application characteristics and/or giving improved film properties are obtained by dispersing the microparticles in combinations of suitable film-forming polymers and diluents.
Abstract:
A process is described for making sterically stabilized non-aqueous dispersions of composite polymer microparticles, in which (1) monomers including at least one crosslinking monomer are polymerized in an aqueous medium at a temperature at least 10.degree. higher than the glass transition temperature of the polymer to be formed, in the presence of a block or graft copolymer stabilizing agent, under conditions such that there is at no time present a separate monomer phase, (2) further monomers, not including any crosslinking monomer, are polymerized in the dispersion thus obtained, the presence of a separate monomer phase again being avoided, and (3) the microparticles are transferred from the resulting dispersion into a non-aqueous medium which is a solvent for the non-crosslinked polymer generated in (2). The microparticles are of value for incorporation into coating compositions the main film-forming constituent of which is compatible with the non-crosslinked component of the particles.