摘要:
The present invention relates to methods of manufacturing an electrochemical energy storage device, such as a hybrid capacitor. The method comprises saturating a porous electrically conductive material in a solution comprising an organic solvent and a metal complex or a mixture of metal complexes; assembling a capacitor comprising the positive electrode made of porous electrically conductive material saturated with a metal complex, a negative electrode, and a separator in a casing; introducing the electrolyte solution into the casing; sealing the casing; and subsequent charge-discharge cycling of the capacitor. The charge-discharge cycling deposits a layer of an energy-accumulating redox polymer on the positive electrode. The electrolyte solution for filling the hybrid capacitor contains an organic solvent, a metal complex, and substances soluble to a concentration of no less than 0.01 mol/L and containing ions that are electrochemically inactive within the range of potentials between −3.0 V to +1.5 V.
摘要:
An energy storage device, such as a battery or supercapacitor, that includes at least two electrodes, at least one of the electrodes includes an electrically conducting substrate having a layer of energy accumulating redox polymer complex compound of transition metal having at least two different degrees of oxidation, which polymer complex compound is formed of stacked transition metal complex monomers. The stacked transition metal complex monomers have a planar structure with the deviation from the plane of no greater than 0.1 nm and a branched system of conjugated &pgr;-bonds. The polymer complex compound of transition metal can be formed as a polymer metal complex with substituted tetra-dentate Schiff's base. The layer thickness of redox polymer is within the range 1 nm-20 &mgr;m.
摘要:
A power plant includes a high temperature fuel cell, a volume expansion heat engine producing mechanical energy, and a combustion chamber coupled to receive from said fuel cell at least a portion of unconsumed fuel and apply high pressure combusted gases to the engine. A reformer can feed fuel to said fuel cell. A distributor distributes fuel cell exhaust fuel selectively to the reformer and the combustion chamber and varies the ratio of exhaust fuel fed to the reformer and combustion chamber in accordance with predetermined power desired from said fuel cell and engine.