Abstract:
An inventory system includes an inventory holder that may be moved by a mobile drive unit. The inventory holder may hold inventory items. The mobile drive unit may move in a manner for facilitating a shift of position of at least one inventory item relative to the inventory holder. Such movement may be accomplished, for example, by accelerating, decelerating, turning while driving, spinning, dropping the inventory holder, or by causing at least one of the mobile drive unit or the inventory holder to at least one of interact with or engage an obstacle such as a bump over which the mobile drive unit drives, a bar positioned above a floor on which the mobile drive unit drives, a wall, another mobile drive unit, or another inventory holder.
Abstract:
An inventory system includes an inventory holder that may be moved by a mobile drive unit. The inventory holder may hold inventory items. The mobile drive unit may move in a manner for facilitating a shift of position of at least one inventory item relative to the inventory holder. Such movement may be accomplished, for example, by accelerating, decelerating, turning while driving, spinning, dropping the inventory holder, or by causing at least one of the mobile drive unit or the inventory holder to at least one of interact with or engage an obstacle such as a bump over which the mobile drive unit drives, a bar positioned above a floor on which the mobile drive unit drives, a wall, another mobile drive unit, or another inventory holder.
Abstract:
Forecasted drive unit dispatch is described. An inventory pod associated with a materials handling action is identified, and a first drive unit is requisitioned and dispatched to retrieve the inventory pod and return it to a materials handling station. Concurrently, the ongoing status of other materials handling actions are monitored over time. Based on the ongoing status, a timeframe for the completion of another materials handling action is determined. An inventory pod zone associated with the other materials handling action is identified, and a second drive unit is dispatched on a forecasted route toward the inventory pod zone based on the timeframe. Later, the second drive unit is redirected to a particular inventory pod within the inventory pod zone. The second drive unit arrives at the particular inventory pod in less time because it was dispatched on the forecasted route toward the inventory pod zone earlier.
Abstract:
A system to provide additional functionality to robots in automated warehouse systems is disclosed. The system can include a number of additional components that can be attached to existing components of the warehouse system to improve safety, functionality, and decrease costs. The system can provide modular tools to enable robots to perform additional tasks without having equipment permanently installed on the robots. The bases or shelves for the automated warehouse system can be equipped with robotic arms, lights, cameras, sensors, actuators and other components to enable a robot to utilize a particular tool for a particular job. The robot and the bases or shelving units can also comprise complementary electronic connections to provide power and/or data communications between the robot, the bases or shelving units, and/or a management module.
Abstract:
Containers for an inventory system can be formed from a set of container segments bounded by container partitions. The container segments can be coupled end to end to one another and include receiving features for receiving partitions therein. A segment can separate from an adjacent segment in response to receiving a partition in a receiving feature at an end of one of the segments, or in response to interaction with decoupler distinct from the partition. Containers of differing lengths can be provided by using partitions to bound different numbers of interconnected segments.
Abstract:
An item may be outfitted with a cartridge for varying a net density of the item and deposited in a body of liquid for storage. The cartridge may cause a net density of the item to exceed a density of the liquid, or to fall below the density of the liquid, and to descend or ascend within the liquid, as desired. The cartridge may also cause a net density of the item to equal the density of the liquid, and thus remain at a constant depth. The cartridge may be configured to receive acoustic signals or other forms of instructions for varying a net density of the item, and may send acoustic signals or other messages identifying a depth or position of the item. The cartridge may thus enable an item to be stored at any depth within the liquid, and be retrieved upon demand.
Abstract:
A system to provide additional functionality to robots in automated warehouse systems is disclosed. The system can include a number of additional components that can be attached to existing components of the warehouse system to improve safety, functionality, and decrease costs. The system can provide modular tools to enable robots to perform additional tasks without having equipment permanently installed on the robots. The bases or shelves for the automated warehouse system can be equipped with robotic arms, lights, cameras, sensors, actuators and other components to enable a robot to utilize a particular tool for a particular job. The robot and the bases or shelving units can also comprise complementary electronic connections to provide power and/or data communications between the robot, the bases or shelving units, and/or a management module.
Abstract:
In an infrastructure that uses a mobile order fulfillment system, robotic drive units may be dispatched and instructed to bring inventory holders to a workstation where at least one of the inventory holders is packed and prepared for shipment. The robotic drive units are then instructed to move the prepared inventory holder to a transport vehicle such as a truck. Fiducial marks may be removably placed within the transport vehicle to aid navigation of the robotic drive units. At a destination facility, additional robotic drive units may be instructed to move the inventory holders from the truck and place the inventory holders at appropriate storage locations.
Abstract:
An inventory management system is described. The inventory management system may be configured to determine a head or eye level of an operator interacting with a storage structure. As part of this process, visual image data, thermal image data, or LiDAR data can be obtained and the eyes or head of the operator identified in the obtained data, or the operator may wear a device usable to determine head or eye position. The determined head or eye level can be correlated with a vertical position on a display, and inventory information can be displayed to the operator at the determined level.
Abstract:
Systems and methods are provided herein for coordinating motion between components of an inventory system. A first set of instructions associated with a first task to be performed by a first robotic device may be received. A second set of instructions associated with a second task to be performed by a second robotic device may be received. The first and second robotic devices may be configured to utilize corresponding operational areas that may overlap to define an area of overlap. Light information representative of the spatial condition of at least one of the robotic devices may be projected onto a projection surface. The light information may be utilized to determine that at least one of the first and second robotic devices is utilizing the area of overlap. A remedial action may be performed to coordinate motion of the first and second robotic devices within the area of overlap.