Abstract:
Systems and methods are provided that include a heat integrated coal treating system having a two-stage coal treating process. In one embodiment, the two-stage treating process may include an HF reactor and an HNO3 reactor coupled to the nitric acid reactor and having a fluid exchanging heat between the hydrofluoric acid reactor and the nitric acid reactor.
Abstract:
Disclosed herein is a system comprising a first compressor; the compressor being operative to compress air; a turbine; the turbine being disposed downstream of the first compressor; the turbine being operative to combust a hydrocarbon fuel along with compressed air from the first compressor to produce an exhaust gas stream; and a second compressor; the second compressor being disposed downstream of the turbine; the second compressor being operative to compress the exhaust gas stream and to recycle the compressed exhaust gas stream to the turbine. Disclosed herein is a method comprising compressing air in a first compressor; combusting the air along with a hydrocarbon fuel in a turbine; generating an exhaust gas stream from the turbine; compressing the exhaust gas stream in a second compressor; recirculating the compressed exhaust gas stream to the turbine; separating carbon dioxide from the exhaust gas stream; and storing the carbon dioxide.
Abstract:
A gas turbine system including a source of gas coupled to a source of fuel wherein the gas and the fuel are combined to form a mixture of gas and fuel prior to the mixture being introduced to a fuel nozzle of the gas turbine system.
Abstract:
A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow.
Abstract:
A gas turbine system including a source of gas coupled to a source of fuel wherein the gas and the fuel are combined to form a mixture of gas and fuel prior to the mixture being introduced to a fuel nozzle of the gas turbine system.
Abstract:
A split heat recovery steam generator (HRSG) arrangement including a first HRSG coupled to a turbine and thereby receptive of a portion of the exhaust gases to deliver the portion of the exhaust gases to a compressor, a second HRSG coupled to the turbine and thereby receptive of a remaining portion of the exhaust gases, which includes an NOx catalyst and a CO catalyst sequentially disposed therein to remove NOx and CO from the exhaust gases and an air injection apparatus to inject air into the second HRSG between the NOx catalyst and the CO catalyst to facilitate CO consumption at the CO catalyst.
Abstract:
At least one main air compressor makes a compressed ambient gas flow. The compressed ambient gas flow is delivered to a turbine combustor at a pressure that is greater than or substantially equal to an output pressure delivered to the turbine combustor from a turbine compressor as at least a first portion of a recirculated gas flow. A fuel stream is delivered to the turbine combustor, and a combustible mixture is formed and burned, forming the recirculated gas flow. A turbine power is produced that is substantially equal to at least a power required to rotate the turbine compressor. At least a portion of the recirculated gas flow is recirculated through a recirculation loop. An excess portion of the recirculated gas flow is vented or a portion of the recirculated gas flow bypasses the turbine combustor or both.
Abstract:
A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow.
Abstract:
A method of using a film-cooling insert for a turbine airfoil is disclosed. The method includes forming an airfoil sidewall having a film-cooling hole that extends between an airfoil cooling circuit and an airfoil surface. The method also includes forming a film-cooling insert and disposing the film-cooling insert in the film-cooling hole. A method of reconstructing a film-cooling insert for a turbine airfoil is also disclosed. The method includes removing a remnant of a film-cooling insert from a film-cooling hole of a turbine airfoil. The method also includes disposing a second film-cooling insert in the film-cooling hole.
Abstract:
Systems, methods, and apparatus for capturing CO2 using a solvent are provided. A gas that includes carbon dioxide may be mixed with a solvent that is operable to absorb at least a portion of the carbon dioxide from the gas. The solvent containing the carbon dioxide may be provided to at least one removal system operable to remove at least a portion of the liquid contained in the solvent. The solvent output by the removal system may be stripped to extract at least a portion of the carbon dioxide from the solvent.