Abstract:
The present disclosure provides systems and methods for power production. In particular, the systems and methods utilize the addition of heat to an expanded turbine exhaust stream in order to increase the available quantity of heat for recuperation and use therein for heating a compressed carbon dioxide stream for recycle back to a combustor of the power production system and method.
Abstract:
A power generation system includes an inert gas power source, a thermal/electrical power converter and a power plant. The thermal/electrical power converter includes a compressor with an output coupled to an input of the inert gas power source. The power plant has an input coupled in series with an output of the thermal/electrical power converter. The thermal/electrical power converter and the power plant are configured to serially convert thermal power produced at an output of the inert gas power source into electricity. The thermal/electrical power converter includes an inert gas reservoir tank coupled to an input of the compressor via a reservoir tank control valve and to the output of the compressor via another reservoir tank control valve. The reservoir tank control valve and the another reservoir tank control valve are configured to regulate a temperature of the output of the thermal/electrical power converter.
Abstract:
The present disclosure relates to systems and methods that provide power generation using predominantly CO2 as a working fluid. In particular, the present disclosure provides for particular configurations for startup of a power generation system whereby the combustor may be ignited before the turbine is functioning at a sufficiently high speed to drive the compressor on a common shaft to conditions whereby a recycle CO2 stream may be provided to the combustor at a sufficient flow volume and flow pressure. In some embodiments, a bypass line may be utilized to provide additional oxidant in place of the recycle CO2 stream.
Abstract:
The present disclosure provides an integrated power generating system and method that combines combustion power generation with solar heating. Specifically, a closed cycle combustion system utilizing a carbon dioxide working fluid can be increased in efficiency by passing at least a portion of a carbon dioxide working fluid through a solar heater prior to passage through a combustor.
Abstract:
A gas turbine system includes a combustor configured to combust an oxidant and a fuel in the presence of an exhaust gas diluent to produce combustion products, an oxidant supply path fluidly coupled to the combustor and configured to flow the oxidant to the combustor at an oxidant flow rate, and a turbine configured to extract work from the combustion products to produce an exhaust gas used to generate the exhaust gas diluent. The turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products. The system also includes an electrical generator that generates electrical power in response to rotation by the shaft, and a controller that performs load control in response to a target load by adjusting the oxidant flow rate along the oxidant flow path as a primary load control parameter.
Abstract:
A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel, and the second flow includes a first oxidant and a first diluent. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
Abstract:
Systems and methods for utilizing gas turbine compartment ventilation discharge air. In one embodiment, a system may include a gas turbine engine having a compressor. The system also may include a gas turbine compartment disposed about the gas turbine engine. Moreover, the system may include an inlet bleed heat (IBH) manifold in fluid communication with the compressor. The gas turbine compartment may be in fluid communication with the IBH manifold for providing the IBH manifold with ventilation discharge air from the gas turbine compartment.
Abstract:
Methods and systems for enhanced recovery of coal bed methane. A method includes generating a diluent gas mixture comprising N2 and CO2 in a semi-closed Brayton cycle power plant, injecting at least a portion of the diluent gas mixture into a coal bed, and recovering a mixed production gas comprising methane from the coal bed.
Abstract:
A power generation apparatus, a power generation method, a decomposition-gas boiler, and a decomposition-gas turbine with which nitrous oxide may be used as an environmentally friendly energy source. A fuel gas including nitrous oxide (N2O) is supplied to a decomposition reactor (22) in which a catalyst (21) for decomposing nitrous oxide is disposed. Steam is generated by a decomposition-gas boiler by heat recovery from decomposition gas (N2, O2) generated by decomposing the nitrous oxide, the steam generated by the decomposition-gas boiler is used to drive the rotation of a steam turbine to obtain motive power, and the motive power is subsequently used to drive a generator to obtain electrical power. Alternatively, the decomposition gas (N2, O2) generated by decomposing the nitrous oxide is used to drive the rotation of a decomposition-gas turbine to obtain motive power.
Abstract:
The gas turbine facility 10 of the embodiment includes a combustor 20 combusting fuel and oxidant, a turbine 21 rotated by combustion gas, a heat exchanger 23 cooling the combustion gas, a heat exchanger 24 removing water vapor from the combustion gas which passed through the heat exchanger 23 to regenerate dry working gas, and a compressor 25 compressing the dry working gas until it becomes supercritical fluid. Further, the gas turbine facility 10 includes a pipe 42 guiding a part of the dry working gas from the compressor 25 to the combustor 20 via the heat exchanger 23, a pipe 44 exhausting a part of the dry working gas to the outside, and a pipe 45 introducing a remaining part of the dry working gas exhausted from the compressor 25 into a pipe 40 coupling an outlet of the turbine 21 and an inlet of the heat exchanger 23.