Abstract:
A method and system for combining a guard interval and a corresponding portion of a received symbol, whereby when receiving a signal that contains the symbol with a guard interval corresponding to the symbol, a portion of the guard interval that is free from inter-symbol interference may be extracted, and the extracted portion of the guard interval may be combined with the corresponding portion of the symbol. The extracting and combining may be done after a determining, based on a delay profile provided by the received signal, that a delay spread is smaller than a predetermined channel delay. The delay spread may be determined by filtering an instantaneous delay spread associated with the received signal. The filtering may be performed using a 1-tap infinite impulse response low-pass filter. The low-pass filter may include a time constant that is the inverse of a maximum Doppler frequency shift.
Abstract:
A GPS receiver includes an RF front end for acquiring and tracking a satellite signal and a baseband processor configured to preserve power. The baseband processor includes a GPS engine configured to process the satellite signal and generate a PVT fix, a power supervisory module for receiving the PVT fix, and a user state module that determines an environmental state, wherein the power supervisory module may power down the GPS receiver for a period of time based on a result of the determined environment state. The baseband processor also includes a time-based management module that adjusts the TCXO in response to the determined environmental state. The GPS receiver includes a plurality of operation modes, each of which is associated with a plurality of tracking profiles.
Abstract:
An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
Abstract:
An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
Abstract:
Systems and methods for extracting synchronization information from ambient signals, such as broadcast television signals, and using the synchronization information as a reference for correcting the local time base so that a GNSS positioning receiver system maintains relative time base accuracy with respect to a GNSS time.
Abstract:
Systems and methods for adjusting timing in a communication system, such as an OFDM system are described. In one implementation an error signal is generated to adjust the timing of a variable rate interpolator so as to adjust FFT timing. The error signal may be based on detection of significant peaks in an estimate of the impulse response of the channel, with the peak locations being tracked over subsequent symbols and the system timing adjusted in response to changes in the peaks.
Abstract:
An implementation of a signaling protocol for low power and large scale wireless networks provides a media access control (MAC) that produces a low rate two-way communication link between a commercial infrastructure and a very large number of small, low-cost devices known as electronic tags. The numerous tags attached to merchandise or shelves communicate with a number of access points (AP) distributed throughout a facility containing merchandise for sale or storage. A store controller maintains the pricing database for the point of sale (POS) registers of the facility. Price changes are transmitted in real time to the tag, thus updating the merchandise tags and the point of sales (POS) registers simultaneously. The tags contain a controller and a battery in which conservation of power is crucial to the life of the tags.