Abstract:
Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband path (WB) and a narrowband path (NB), wherein the WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel. Video channels and a network channel may be received in the WB when the device is operating in a first stage. Video channels and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and the NB may enable a continuous reception of the network channel in a transition between the first and third stages.
Abstract:
A GPS receiver includes an RF front end for acquiring and tracking a satellite signal and a baseband processor configured to preserve power. The baseband processor includes a GPS engine configured to process the satellite signal and generate a PVT fix, a power supervisory module for receiving the PVT fix, and a user state module that determines an environmental state, wherein the power supervisory module may power down the GPS receiver for a period of time based on a result of the determined environment state. The baseband processor also includes a time-based management module that adjusts the TCXO in response to the determined environmental state. The GPS receiver includes a plurality of operation modes, each of which is associated with a plurality of tracking profiles.
Abstract:
An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
Abstract:
An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
Abstract:
Systems and methods for extracting synchronization information from ambient signals, such as broadcast television signals, and using the synchronization information as a reference for correcting the local time base so that a GNSS positioning receiver system maintains relative time base accuracy with respect to a GNSS time.
Abstract:
Systems and methods for adjusting timing in a communication system, such as an OFDM system are described. In one implementation an error signal is generated to adjust the timing of a variable rate interpolator so as to adjust FFT timing. The error signal may be based on detection of significant peaks in an estimate of the impulse response of the channel, with the peak locations being tracked over subsequent symbols and the system timing adjusted in response to changes in the peaks.
Abstract:
An implementation of a signaling protocol for low power and large scale wireless networks provides a media access control (MAC) that produces a low rate two-way communication link between a commercial infrastructure and a very large number of small, low-cost devices known as electronic tags. The numerous tags attached to merchandise or shelves communicate with a number of access points (AP) distributed throughout a facility containing merchandise for sale or storage. A store controller maintains the pricing database for the point of sale (POS) registers of the facility. Price changes are transmitted in real time to the tag, thus updating the merchandise tags and the point of sales (POS) registers simultaneously. The tags contain a controller and a battery in which conservation of power is crucial to the life of the tags.
Abstract:
A GPS receiver includes an RF front end for acquiring and tracking a satellite signal and a baseband processor configured to preserve power. The baseband processor includes a GPS engine configured to process the satellite signal and generate a PVT fix, a power supervisory module for receiving the PVT fix, and a user state module that determines an environmental state, wherein the power supervisory module may power down the GPS receiver for a period of time based on a result of the determined environment state. The baseband processor also includes a time-based management module that adjusts the TCXO in response to the determined environmental state. The GPS receiver includes a plurality of operation modes, each of which is associated with a plurality of tracking profiles.
Abstract:
A decoder for a communication system includes an iterative decoding module configured to receive soft-input information bits. The iterative decoding module iterates on probability estimates of the soft-input information bits to generate hard-decision output information. The iterative decoding module includes a plurality of arithmetic modules operating to generate and process both backward and forward metrics substantially simultaneously using modulo arithmetic operations.
Abstract:
Methods and systems for repurposing of a global navigation satellite system receiver for receiving low-earth orbit (LEO) communication satellite timing signals may comprise receiving medium Earth orbit (MEO) satellite signals and/or LEO signals in a receiver of the communication device. A radio frequency (RF) path may be configured to down-convert either of the signals, and a position of the communication device may be calculated utilizing the down-converted signals. The signals may be down-converted utilizing a local oscillator signal generated by a phase locked loop (PLL), which may be delta-sigma modulated via a fractional-N divider. A clock signal may be communicated to the PLL utilizing a temperature-compensated crystal oscillator. The signals may be down-converted to an intermediate frequency or down-converted directly to baseband frequencies. The signals may be processed utilizing surface acoustic wave (SAW) filters. In-phase and quadrature signals may be processed in the RF path utilizing a two-stage polyphase filter.