Abstract:
Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
A method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in a plurality of vertically extending horizontally spaced slurry channels inside a common reactor shell, the slurry channels being defined between vertically extending horizontally spaced divider walls or plates and each slurry channel having a height, width and breadth such that the height and breadth are much larger than the width. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in the slurry channels, thereby to form non-gaseous and/or gaseous product. Gaseous product and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
A method of supplying steam and a hydrogen feedstock to a primary process for producing synthesis gas includes, in a reformer of a secondary process which comprises a plurality of catalyst containing reforming passages, combusting a fuel to heat all of the reforming passages, whilst producing a hot synthesis gas by reforming a hydrocarbonaceous gas in the presence of process steam in some of the catalyst containing reforming passages only. The hot synthesis gas is cooled to produce steam which is supplied to the primary process. The cooled synthesis gas is treated to produce a hydrogen feedstock which is supplied to the primary process. The reforming passages not producing hot synthesis gas are cooled by passing a cooling medium through them and the hot synthesis gas exiting some of the reforming passages is separated from the cooling medium exiting other reforming passages.
Abstract:
A process for producing liquid and, optionally, gaseous products from gaseous reactants feeds (18), at a low level, gaseous reactants into a slurry bed of solid catalyst particles (14) suspended in a suspension liquid. The gaseous reactants are allowed to react as they pass upwardly through the slurry bed (14), hereby to form liquid and, optionally, gaseous products. The reaction is catalyzed by the catalyst particles. Liquid product is separated from the catalyst particles by passing, in a filtration zone (22) within the slurry bed, liquid product through a filtering medium having a plurality of openings through which the liquid passes. The openings have a controlling dimension of x microns. The proportion of catalyst particles, which have a particle size smaller than x microns, in the slurry bed is less than 18% by volume based on the total volume of the catalyst in the slurry bed.
Abstract:
A process (10) for co-producing power and hydrocarbons includes gasifying (16, 70) coal to produce a synthesis gas (36) and a combustion gas (86) both comprising at least CO1H2 and CO2 and being at elevated pressure, separating CO2 (18, 48) from the synthesis gas, and synthesizing (20, 22) hydrocarbons from the synthesis gas. Power (1 14) is generated from the combustion gas, including by combusting (78) the combustion gas in the presence of oxygen and in the presence of at least a portion of the separated CO2 as moderating agent to produce a hot combusted gas (106) which includes CO2. The CO2 is recycled (1 12) or recovered from the combusted gas. In certain embodiments, the process (10) produces a CO2 exhaust stream (134) for sequestration or capturing for further use.
Abstract:
Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
A method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in a plurality of vertically extending horizontally spaced slurry channels inside a common reactor shell, the slurry channels being defined between vertically extending horizontally spaced divider walls or plates and each slurry channel having a height, width and breadth such that the height and breadth are much larger than the width. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in the slurry channels, thereby to form non-gaseous and/or gaseous product. Gaseous product and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
Abstract:
A process (10) for co-producing power and hydrocarbons includes in a wet gasification stage (70), gasifying coal to produce a combustion gas (86) at elevated pressure comprising at least H2 and CO; enriching (72) a first portion of the combustion gas with H2 to produce an H2-enriched gas (88); and generating power (77) from a second portion of the combustion gas. In a dry gasification stage (16), coal is gasified to produce a synthesis gas precursor (36) at elevated pressure comprising at least H2 and CO. At least a portion of the H2-enriched gas (88) is mixed with the synthesis gas precursor (36) to provide a synthesis gas for hydrocarbon synthesis, with hydrocarbons being synthesised (20, 22) from the synthesis gas. In certain embodiments, the process (10) produces a CO2 exhaust stream (134) for sequestration or capturing for further use.