摘要:
The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
摘要:
The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane; applying a voltage between a conductive element at the primary side of the membrane and a conductive element at a secondary side of the membrane, the conductive elements being electrically connected to the membrane, wherein a plasma is generated at at least one of the primary side and the secondary side of the membrane, the plasma being used as conductive element.
摘要:
A process for producing ammonia make-up synthesis gas and a procedure for revamping a front-end of an ammonia plant for producing ammonia make-up synthesis gas are disclosed, wherein the make-up synthesis gas is produced by means of steam reforming of a hydrocarbon gaseous feedstock; said front-end includes a primary reformer, a secondary reformer, a shift conversion section, a CO2 removal section and optionally a methanation section; a shell-and-tube gas-heated reformer is installed after said secondary reformer, and a portion of the available feedstock is reformed in the tubes of said gas-heated reformer, and heat is provided to the shell side of said gas-heated reformer by at least a portion of product gas leaving the secondary reformer, possibly mixed with product gas leaving the tubes of said gas-heated reformer.
摘要:
A process and a plant for producing ammonia, where an ASU (3) delivers an oxygen stream and a nitrogen stream; the oxygen stream (9) is fed to the secondary reformer of a front-end reforming section (1); the nitrogen stream (10) is used to wash a purge gas or tail gas taken from the synthesis loop (2), preferably in a cryogenic section; a methane-free and inert-free gas stream is recovered and recycled to the synthesis loop (2) or at the suction of the main syngas compressor, to recover the hydrogen contained therein. A corresponding method for increasing the capacity of an ammonia plant, by providing the ASU and feeding the oxygen stream to the secondary reformer and the nitrogen stream to a suitable purge gas recovery unit.
摘要:
The oxygen partial pressure control unit includes a gas purification section for purifying the gas having the oxygen partial pressure controlled within a range of from 0.2 to 10−30 atm, and a tank for storing the purified gas produced by the gas purification section. The purified gas stored within the tank is supplied to the another unit. The oxygen partial pressure control unit includes a circulation circuit including the tank and the gas purification section. The gas filled in the tank 20 is caused to circulate along the circulation circuit, and the purified gas produced by the gas purification section is stored in the tank.
摘要:
A process for producing hydrocarbons from natural gas includes, in a cryogenic separation stage, cryogenically separating the natural gas to produce at least a methane stream and natural gas liquids, in a reforming stage, reforming the methane stream to produce a synthesis gas which includes at least CO and H2, and in a Fischer-Tropsch hydrocarbon synthesis stage, converting at least some of the CO and H2 into a Fischer-Tropsch product which includes hydrocarbons. A Fischer-Tropsch tail gas which includes at least CO and H2, methane and heavier than methane hydrocarbons, is separated from the Fischer-Tropsch product in a Fischer-Tropsch product separation stage. At least a portion of the Fischer-Tropsch tail gas is recycled to the cryogenic separation stage, where the Fischer-Tropsch tail gas is cryogenically separated into two or more streams.
摘要:
A conductive element suitable for the transmission of an electrical operating signal to a detonator, which conductive element comprises a conductive filler homogeneously dispersed in a polymer matrix.
摘要:
Methods and systems for a gasifier solids removal system are provided. The system includes a down flow combustor including an inlet and an outlet and a combustion zone extending therebetween, the combustor configured to direct a flow of process material including syngas, flowable slag, and particulates in a first downward direction, a plurality of flow passages in serial flow communication including a first flow passage and a second flow passage, wherein the process material flow reverses direction flowing from the first passage to the second passage, and a plurality of entrainment separation stages in serial flow communication with at least one of the plurality of flow passages.
摘要:
In various implementations, various feed gas streams which include hydrogen and carbon monoxide may be processed for conversion to product streams. For example, the feed gas stream may be processed using the Fischer-Tropsch process. Unconverted hydrogen and carbon monoxide can be recycled using an off-gas catalytic reformer and a gas turbine exhaust gas heat exchanger that will perform preheating duties.
摘要:
The invention concerns a method for producing synthetic gas on an industrial site comprising at least one gas turbine wherein the oxygen-containing gas produced by the gas turbine is upgraded in a combustion implemented on the industrial site or in a heat recovery unit of the industrial site. Preferably, the oxygen-containing gas is used as oxidant of the combustion thereby enabling the reaction for forming the syngas. The invention also concerns a method for controlling the introduction of the oxygen-containing required for combustion to enable the syngas to be formed into a syngas reactor and an associated device.