Abstract:
An optical fiber sensor system and method for monitoring a condition of a linear structure such as a pipeline is provided which is capable of providing continuous monitoring in the event of a break in the sensing optical fiber or fibers. The system includes at least one sensing fiber provided along the length of the linear structure, and first and second interrogation and laser pumping sub-systems disposed at opposite ends of the sensing fiber, each of which includes a reflectometer. The reflectometer of the first interrogation and laser pumping sub-system is connected to one end of the sensing fiber. The reflectometer of the second interrogation and laser pumping sub-system is coupled to either (i) an end of a second sensing fiber provided along the length of the linear structure which is opposite from the one end of the first sensing fiber, or (ii) the opposite end of the first sensing fiber. Before any break of the sensing fiber or fibers occurs, each reflectometer redundantly monitors the condition of the linear structure over its entire length. After any such break occurs, each reflectometer will continue to receive signals up to the point of the break from opposite ends of the structure.
Abstract:
Apparatus and a method for monitoring of a pipe inspection tool in a pipeline, the apparatus comprising at least one sensor carrier apparatus being locatable along and in close proximity to a pipeline, a plurality of acoustic sensors being locatable on the sensor carrier apparatus, a pipeline inspection tool which is moveable through the pipeline being detectable by means of the acoustic sensors, and the location of the pipeline inspection tool being able to be determined by means of the acoustic sensors.
Abstract:
Apparatus and a method for monitoring of a pipe inspection tool in a pipeline, the apparatus comprising at least one sensor carrier apparatus being locatable along and in close proximity to a pipeline, a plurality of acoustic sensors being locatable on the sensor carrier apparatus, a pipeline inspection tool which is moveable through the pipeline being detectable by means of the acoustic sensors, and the location of the pipeline inspection tool being able to be determined by means of the acoustic sensors.
Abstract:
Pramlintide, a peptide having the 37 amino acid sequence KCNTATCATQRLANFLVHSSNNFGPILPPT-NVGSNTY-NH2 is prepared via a convergent three-fragment synthesis strategy from the fragments comprising the amino acid residues 1-12, 13-24 and 25-37, respectively.
Abstract:
An improved method and system of deploying a pipeline for fiber optic sensing applications. A plurality of pipe sections (11) are provided each having an internal pipe (13) surrounded by material layer(s). Opposed ends (17A) of each pipe section have a portion of the surrounding layer(s) removed or omitted. A tubular member (19) extends lengthwise along each pipe section within the surrounding layer(s) and has free ends (19A) that extend from respective terminal walls (20A) of the surrounding layer(s). Adjacent pipe sections are joined together. The tubular members of adjacent pipe sections are joined together to form a conduit that extends along the pipeline. The conduit is adapted to carry one or more fiber optic waveguides therein. At least one second layer of material is applied to the area between the joined pipe sections. The surrounding layer and the at least one second layer provide for insulation and/or protection of the internal pipes of the pipeline.
Abstract:
A technique facilitates the monitoring of elongate structures. An elongate structure is combined with an optical fiber deployed along the structure. An interrogation system is operatively joined with the optical fiber to input and monitor optical signals to determine any changes in parameters related to the structure.