Optical Systems Having Gradient Index Optical Structures

    公开(公告)号:US20220011496A1

    公开(公告)日:2022-01-13

    申请号:US17482149

    申请日:2021-09-22

    Applicant: Apple Inc.

    Abstract: An electronic device may include a waveguide with an input coupler and an output coupler. The input coupler may receive the image light from imaging optics. The input coupler may be an input coupling prism and the imaging optics may include lens elements. World light may be viewable at an eye box through the output coupler. Biasing, compensation, and/or prescription lenses may overlap the output coupler. The input coupling prism, the lens elements in the imaging optics, and/or one or more of the biasing, compensation, and prescription lenses may be formed from gradient index (GRIN) material. The GRIN material may have a gradient refractive index that varies in one or more gradient directions. Use of GRIN materials may minimize the volume required to form the device without sacrificing optical performance. In addition, the GRIN materials may compensate for dispersion and aberrations in the device.

    Optical Systems with Switchable Lenses for Mitigating Variations in Ambient Brightness

    公开(公告)号:US20220004008A1

    公开(公告)日:2022-01-06

    申请号:US17477408

    申请日:2021-09-16

    Applicant: Apple Inc.

    Abstract: An electronic device may have an optical combiner, a spatial light modulator, and illumination optics. The modulator may produce image light for the combiner by modulating illumination light from the illumination optics. Adjustable optical components in the illumination optics may be controlled to adjust the illumination optics between first and second states. In the first state, the adjustable optical components may provide the illumination light to the modulator with a uniform intensity across the lateral area of the modulator. In the second state, the adjustable optical components may focus the illumination light within a subset of the lateral area. The subset of the lateral area may correspond with a bright object in the image light. The control circuitry may control the illumination optics to ensure that the bright object remains visible at an eye box even when the device is located in bright ambient lighting conditions.

    Optical Systems with Reflective Prism Input Couplers

    公开(公告)号:US20220004007A1

    公开(公告)日:2022-01-06

    申请号:US17477321

    申请日:2021-09-16

    Applicant: Apple Inc.

    Abstract: An electronic device may include a display module that generates light and an optical system that redirects the light towards an eye box. The system may include an input coupler on a waveguide and a lens that directs the light towards the input coupler. The input coupler may include a prism having a reflective surface that reflects the light into the waveguide. The reflective surface may be curved to provide the light with an optical power. The prism may be configured to expand a field of view of the light. A birefringent beam displacer may expand the effective pupil size of the light. The lens may include lens elements that converge the light at a location between the lens elements and the waveguide. A switchable panel may be placed at the location and toggled between first and second orientations to increase the effective resolution of the light.

    Head-mounted device with an adjustable opacity system

    公开(公告)号:US11029521B2

    公开(公告)日:2021-06-08

    申请号:US16352652

    申请日:2019-03-13

    Applicant: Apple Inc.

    Abstract: A head-mounted device may have a transparent display. The transparent display may be formed from a display unit that provides images to a user through an optical coupler. A user may view real-world objects through the optical coupler while control circuitry directs the transparent display to display computer-generated content over selected portions of the real-world objects. The head-mounted display may also include an adjustable opacity system. The adjustable opacity system may include an adjustable opacity layer such as a photochromic layer that overlaps the optical coupler and a light source that selectively exposes the adjustable opacity layer to ultraviolet light to control the opacity of the adjustable opacity layer. The adjustable opacity layer may block or dim light from the real-world objects to allow improved contrast when displaying computer-generated content over the real-world objects.

    Optical systems having angle-selective transmission filters

    公开(公告)号:US12298505B2

    公开(公告)日:2025-05-13

    申请号:US17161469

    申请日:2021-01-28

    Applicant: Apple Inc.

    Abstract: An electronic device may include an emissive display panel that emits light. The light may propagate along an optical path extending to an eye box. A waveguide with an input coupler and an output coupler may be interposed on the optical path. An angle-selective transmission filter (ASTF) may be interposed on the optical path and may filter the emitted light as a function of angle to remove high-angle light from the optical path before the light is provided to the output coupler. The ASTF may include diffractive grating structures such as thin-film holograms, volume holograms, or surface relief gratings, louvered mirrors, multi-layer coatings, or a pinhole array. This ASTF may serve to minimize stray light within the display, thereby optimizing the contrast and the modulation transfer function (MTF) of the display.

    Waveguide deformation sensing
    16.
    发明授权

    公开(公告)号:US12085724B1

    公开(公告)日:2024-09-10

    申请号:US18326400

    申请日:2023-05-31

    Applicant: Apple Inc.

    Abstract: A head-mounted device may have projector, a first waveguide, a second waveguide, and an optical bridge sensor coupled between the first and second waveguides. An input coupler may couple light with a calibration pattern into the first waveguide. The calibration pattern may be included in visible or infrared light produced by the projector or may be included in infrared light produced by infrared emitters mounted to the first waveguide. An output coupler may couple the light having the calibration pattern out of the first waveguide. An additional output coupler may be used to couple visible light from the projector out of the waveguide and towards an eye box. An image sensor may generate image sensor data based on the light having the calibration pattern. Control circuitry may process the calibration pattern in the image sensor data to detect deformation or warping of the first waveguide.

    Optical Systems with Reflective Prism Input Couplers

    公开(公告)号:US20240272438A1

    公开(公告)日:2024-08-15

    申请号:US18641244

    申请日:2024-04-19

    Applicant: Apple Inc.

    Abstract: An electronic device may include a display module that generates light and an optical system that redirects the light towards an eye box. The system may include an input coupler on a waveguide and a lens that directs the light towards the input coupler. The input coupler may include a prism having a reflective surface that reflects the light into the waveguide. The reflective surface may be curved to provide the light with an optical power. The prism may be configured to expand a field of view of the light. A birefringent beam displacer may expand the effective pupil size of the light. The lens may include lens elements that converge the light at a location between the lens elements and the waveguide. A switchable panel may be placed at the location and toggled between first and second orientations to increase the effective resolution of the light.

    Optical Systems Having Compact Display Modules

    公开(公告)号:US20240103272A1

    公开(公告)日:2024-03-28

    申请号:US18254351

    申请日:2021-11-24

    Applicant: Apple Inc.

    CPC classification number: G02B27/0172

    Abstract: A display may include illumination optics (36), a spatial modulator (40) and a waveguide (26). The illumination optics may produce illumination that is modulated by the spatial modulator to produce image light. The waveguide may direct the image light towards an eye box. The illumination optics may include light sources (58) an X-plate (44), and at least one Fresnel lens (60) interposed between the light sources and the X-plate. The Fresnel lenses may minimize the size of the illumination optics while still exhibiting satisfactory optical performance. The spatial light modulator may include a reflective display panel (50) and a powered prism (48) with a reflective coating on a curved reflective surface. The powered prism may optimize f-number while minimizing the volume of the spatial light modulator. The collimating optics may include a diffractive optical element (56) that compensates for thermal effects and chromatic dispersion in the display.

Patent Agency Ranking