Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The display may have an active area surrounded by an inactive area. The opaque border layer may contain first and second opaque layers in the inactive area. The first opaque layer may have an opening in the inactive area that is overlapped by an isolation layer. The second opaque layer may be located in the inactive area and may overlap the opening in the first opaque layer to block light in the inactive area. The isolation layer may be interposed between the first and second opaque layers and may prevent static charge from an electrostatic discharge event along the edge of the display from migrating to the active area through the opaque border in the inactive area.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The display may have an active area surrounded by an inactive area. The opaque border layer may contain first and second opaque layers in the inactive area. The first opaque layer may have an opening in the inactive area that is overlapped by an isolation layer. The second opaque layer may be located in the inactive area and may overlap the opening in the first opaque layer to block light in the inactive area. The isolation layer may be interposed between the first and second opaque layers and may prevent static charge from an electrostatic discharge event along the edge of the display from migrating to the active area through the opaque border in the inactive area.
Abstract:
A display is provided that has upper and lower polarizers, a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer and thin-film transistor layer may be formed from materials such as glass that are subject to stress-induced birefringence. To reduce light leakage that reduces display performance, one or more internal layers may be incorporated into the display to help ensure that linearly polarized backlight that passes through the display is not undesirably converted into elliptically polarized light. The internal layers may include a thin-film polarizer layer that forms a coating on the color filter layer, a thin-film polarizer layer that forms a coating on the thin-film-transistor layer, a retarder layer that is formed as a coating on the color filter layer, and a retarder layer that is formed as a coating on the thin-film-transistor layer.
Abstract:
An electronic device may have a liquid crystal display having a backlight and color mixing prevention structures. The color mixing prevention structures may, in part, be formed from one or more arrays of color filter elements. The liquid crystal display may include first and second transparent substrate layers on opposing sides of a liquid crystal layer. The display may include a first array of color filter elements on the first transparent substrate layer and a second array of color filter elements on the second transparent substrate layer. One or more of the arrays of color filter elements may include a black matrix formed over portions of the color filter elements. The color filter elements may fill or partially fill openings in the black matrix. The display may include a collimating layer on the second transparent substrate layer. The color filter elements may include cholesteric color filter elements.
Abstract:
A display has an array of display pixels formed from display layers such as one or more polarizer layers, a substrate on which an array of display pixel elements such as color filter elements and downconverter elements are formed, a liquid crystal layer, and a thin-film transistor layer that includes display pixel electrodes and display pixel thin-film transistors for driving control signals onto the display pixel electrodes to modulate light passing through the display pixels. A light source such as one or more laser diodes or light-emitting diodes may be used to generate light for the display. The light may be launched into the edge of a polymer layer or other light guide plate structure. A light guide plate may include phase-matched structures such as holographically recorded gratings or photonic lattices that direct the light upwards through the array of display pixels.
Abstract:
An electronic device may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. The optical system may include a wave plate stack with one or more wave plates. The display system may also include a wave plate stack with one or more wave plates. Each wave plate stack may include a positive dispersion quarter wave plate and a positive dispersion half wave plate. Each wave plate stack may include a negative dispersion quarter wave plate and a negative dispersion half wave plate. Each wave plate stack may include a biaxial quarter wave plate and a biaxial half wave plate.
Abstract:
An electronic device such as a head-mounted device may have a display that produces a display image. The head-mounted device may have an optical system that merges real-world images from real-world objects with display images. The optical system provides the real-world images and display images to an eye box for viewing by a user. The optical system may use time interleaving techniques and/or polarization effects to merge real-world and display images. Switchable devices such as polarization switches and tunable lenses may be controlled in synchronization with frames of display images. Geometrical phase lenses may be used that exhibit different lens powers to different polarizations of light.
Abstract:
An optical system may include equipment with a housing that is configured to receive external equipment such as a cellular telephone. The external equipment may include a display. To control the persistence of the display, the optical system may include a light modulating layer. The light modulating layer may switch between a transparent state in which display image light is passed through the light modulating layer to reach the viewer and an opaque state in which display image light is blocked by the light modulating layer from reaching the viewer. The light modulating layer may be placed in the transparent state for a portion of each display frame and the opaque state for the remaining portion of each display frame. The light modulating layer may be formed in the housing of the equipment that receives the external equipment or may be formed with the external equipment directly.
Abstract:
An electronic device such as a head-mounted device may have a display that produces a display image. The head-mounted device may have an optical system that merges real-world images from real-world objects with display images. The optical system provides the real-world images and display images to an eye box for viewing by a user. The optical system may use time interleaving techniques and/or polarization effects to merge real-world and display images. Switchable devices such as polarization switches and tunable lenses may be controlled in synchronization with frames of display images. Geometrical phase lenses may be used that exhibit different lens powers to different polarizations of light.
Abstract:
An electronic device may have a hinge that allows the device to be flexed about a bend axis. A display may span the bend axis. To facilitate bending about the bend axis without damage, the display may include a display cover layer with a flexible portion. The flexible portion of the display cover layer may be interposed between first and second rigid portions of the display cover layer. The display cover layer may also include a layer with self-healing properties. The layer of self-healing material may be formed across the entire display cover layer or may be formed only in the flexible region of the display cover layer. The display cover layer may include a layer of elastomer in the flexible region of the display cover layer for increased flexibility. Self-healing may be initiated or expedited by externally applied heat, light, electric current, or other type of external stimulus.