Abstract:
A process for manufacturing a coated metal strip having a metallic corrosion protection coating is provided. The process includes passing a metal strip through a molten metal bath comprising from 2 to 8 wt % aluminum, 0 to 5 wt % magnesium, up to 0.3 wt % additional elements, and a balance including zinc and inevitable impurities, to yield a molten metal coated metal strip, wiping the molten metal coated metal strip with a nozzle spraying a gas on either side of the molten metal coated metal strip and cooling the coating in a controlled manner until the coating has completely solidified, to obtain the coated metal strip. A temperature of the molten metal bath is from 350 to 700° C., and the cooling is conducted at a rate less than 15° C./s between a temperature on leaving a unit where the wiping occurs and a start of solidification of the coating, and then at a rate greater than or equal to 15° C./s between a start and an end of solidification of the coating.
Abstract:
A hot-dip-coated, non-skin-passed, cold-rolled metal strip is provided. The metal strip is obtained by passing the metal strip through a bath of molten metal, wiping the coated metal strip with nozzles that spray a gas on each side of the strip and making the strip pass through a confinement zone. The metal coating of the metal strip includes a waviness Wa0.8 of less than or equal to 0.70 μm, 0.2 to 8% by weight of aluminum and magnesium in the following proportions: 0.1 to 8% by weight of magnesium for an aluminum content equal to or greater than 0.2% but less than 2% by weight or a content greater than 5% but less than or equal to 8% by weight of magnesium for an aluminum content equal to or greater than 2% but less than or equal to 8% by weight, and up to 0.3% by weight of additional elements, the balance being zinc and inevitable impurities. Metal parts are also provided.
Abstract:
A metal sheet is provided. The metal sheet includes a substrate having two faces, each face hot dip coated with a metal coating of zinc, aluminum and magnesium. The metal coatings include between 0.1 and 20 wt % of aluminum and 0.1 and 10 wt % of magnesium. Layers of magnesium oxide or magnesium hydroxide are formed on outer surfaces of the metal coatings. The layers are altered by applying an acid solution on the outer surfaces of the metal coatings or by applying mechanical forces using a roller leveler, a brushing device, or a shot-blasting device on the outer surfaces of the metal coatings. The metal sheet also includes a layer of oil deposited directly on the outer surfaces of the metal coatings.
Abstract:
A metal sheet including a substrate having at least one face coated by a metallic coating is provided. The metallic coating has an aluminium content by weight tAl of between 3.6 and 3.8% a magnesium content by weight tMg of between 2.7 and 3.3%. The coating has a microstructure comprising a lamellar matrix of eutectic ternary Zn/Al/MgZn2 and possibly: dendrites of Zn with an accumulated surface content exceeding 5.0%, flowers of binary eutectic of Zn/MgZn2 with an accumulated surface content less than or equal to 15.0%, dendrites of binary eutectic Zn/Al surface with an accumulated surface content of less than 1.0% islets of MgZn2 with an accumulated surface content below 1.0%.
Abstract:
An installation for continuous hot-dip coating of a metal strip is provided. The installation includes a tank containing a bath of molten metal, a metal strip running through the bath and a confined wiping device. The confined wiping device includes at least two wiping nozzles placed on each side of a path of the strip after the strip has left the bath of molten metal. Each nozzle has at least one gas outlet orifice and an upper face. The confined wiping device also includes a confinement box adjacent each upper face. The confinement boxes are open on a face which faces the strip. Each box includes at least one upper part and two lateral parts.
Abstract:
An installation for continuous hot-dip coating of a metal strip is provided. The installation includes a tank containing a bath of molten metal, a metal strip running through the bath and a confined wiping device. The confined wiping device includes at least two wiping nozzles placed on each side of a path of the strip after the strip has left the bath of molten metal. Each nozzle has at least one gas outlet orifice and an upper face. The confined wiping device also includes a confinement box adjacent each upper face. The confinement boxes are open on a face which faces the strip. Each box includes at least one upper part and two lateral parts.
Abstract:
A process for the manufacture of a pre-painted sheet. The process includes supplying a steel substrate, depositing a metallic coating on at least one face by hot-dipping of the substrate in a bath including 4.4% to 5.25% by weight aluminum and 0.3% to 0.56% by weight magnesium. The rest of the bath includes exclusively zinc, unavoidable impurities resulting from the process and optionally one or more additional elements including Si, Ti, Ca, Mn, La, Ce and Bi. The content by weight of each additional element in the metallic coating is less than 0.3% and the presence of nickel is excluded. The process further includes solidifying the metallic coating, surface preparation of the metallic coating and painting of the metallic coating. The present invention further provides a pre-painted sheet.
Abstract:
An installation for continuous hot-dip coating of a metal strip is provided. The installation includes a tank containing a bath of molten metal, a metal strip running through the bath and a confined wiping device. The confined wiping device includes at least two wiping nozzles placed on each side of a path of the strip after the strip has left the bath of molten metal. Each nozzle has at least one gas outlet orifice and an upper face. The confined wiping device also includes a confinement box adjacent each upper face. The confinement boxes are open on a face which faces the strip. Each box includes at least one upper part and two lateral parts.
Abstract:
An installation for continuous hot-dip coating of a metal strip is provided. The installation includes a tank containing a bath of molten metal, a metal strip running through the bath and a confined wiping device. The confined wiping device includes at least two wiping nozzles placed on each side of a path of the strip after the strip has left the bath of molten metal. Each nozzle has at least one gas outlet orifice and an upper face. The confined wiping device also includes a confinement box adjacent each upper face. The confinement boxes are open on a face which faces the strip. Each box includes at least one upper part and two lateral parts.
Abstract:
An installation for continuous hot-dip coating of a metal strip is provided. The installation includes a tank containing a bath of molten metal, a metal strip running through the bath and a confined wiping device. The confined wiping device includes at least two wiping nozzles placed on each side of a path of the strip after the strip has left the bath of molten metal. Each nozzle has at least one gas outlet orifice and an upper face. The confined wiping device also includes a confinement box adjacent each upper face. The confinement boxes are open on a face which faces the strip. Each box includes at least one upper part and two lateral parts.