Abstract:
Solvent free epoxy system that includes: a hardener compound H comprising: a molecular structure (Y1—R1—Y2), wherein R1 is an ionic moiety Y1 is a nucleophilic group and Y2 nucleophilic group; and an ionic moiety A acting as a counter ion to R1; and an epoxy compound E comprising: a molecular structure (Z1R2—Z2), wherein R1 is an ionic moiety, Z1 comprises an epoxide group, and Z2 comprises an epoxide group; and an ionic moiety B acting as a counter ion to R2. In embodiments, the epoxy compound E and/or the hardener H is comprised in a solvent-less ionic liquid. The systems can further include accelerators, crosslinkers, plasticizers, inhibitors, ionic hydrophobic and/or super-hydrophobic compounds, ionic hydrophilic compounds, ionic transitional hydrophobic/hydrophilic compounds, biological active compounds, and/or plasticizer compounds. Polymers made from the disclosed epoxy systems and their methods of used.
Abstract:
Methods and systems for facilitating extraction of subterranean hydrocarbons from a geologic structure. The present methods include causing corrosion of a base metal within a geologic structure to produce a gaseous product to increase pressure and form fractures in the geologic structure. Some embodiments of the present methods include injecting a fluid composition comprising the base metal into a wellbore (e.g., into a geologic structure via the wellbore).
Abstract:
The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.