Abstract:
An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
Abstract:
A cation exchange resin having improved chemical properties and mechanical properties, and a cation exchange membrane and an electrolyte membrane for a fuel cell using the same are provided.A cation exchange resin is used, the cation exchange resin comprising: a divalent hydrophobic unit; and a divalent hydrophilic unit having divalent hydrophilic groups which are repeated via carbon-carbon bond, the divalent hydrophilic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group, a divalent silicon-containing group, a divalent nitrogen-containing group, a divalent phosphorus-containing group, a divalent oxygen-containing group, a divalent sulfur-containing group, or carbon-carbon bond, at least one of the aromatic rings having a cation exchange group; wherein the hydrophobic unit and the hydrophilic unit are bonded to each other via carbon-carbon bond.
Abstract:
An anion exchange resin having a hydrophobic unit with divalent hydrophobic groups bonded to each other via an ether bond, the divalent hydrophobic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group, carbon-carbon bond or the like; and a hydrophilic unit having divalent hydrophilic groups bonded to each other via carbon-carbon bond, the divalent hydrophilic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group or carbon-carbon bond, the aromatic ring or at least one of the aromatic rings having an anion exchange group are bonded via carbon-carbon bond.
Abstract:
The present invention relates to a resin composition including a substance capable of reacting reversibly with a carbon dioxide gas, and a hydrocarbon-based polymer; a carbon dioxide gas separation membrane obtained from the resin composition; a carbon dioxide gas separation membrane module including the separation membrane; and a carbon dioxide gas separation apparatus including at least one type of the module.
Abstract:
The present invention relates to a resin composition including a substance capable of reacting reversibly with a carbon dioxide gas, and a hydrocarbon-based polymer; a carbon dioxide gas separation membrane obtained from the resin composition; a carbon dioxide gas separation membrane module including the separation membrane; and a carbon dioxide gas separation apparatus including at least one type of the module.
Abstract:
[Problem] To provide a conductive polymer for solid electrolyte capacitor having outstanding solubility in solvents or dispersibility in solvents and which can produce a capacitor having outstanding capacitor characteristics in high-temperature environments.[Means Used to Resolve the Problem]A conductive polymer (A) for solid electrolyte capacitor containing substituted polythiophene (P) having thiophene repeating units (D) substituted by a least one type of group (s) selected from a group made up of a polyether group (a) indicated in general formula (1); an alkoxy group (b) having 1 to 15 carbon atoms; an alkoxy alkyl group (c) indicated in general formula (2); an alkyl group (d) having 1 to 15 carbon atoms; and a group (e) indicated in general formula (3); as well as thiophene repeating units (E) wherein the hydrogen atoms at position 3 and position 4 on the thiophene ring have been substituted by group (s) and sulfo group (—SO3H) (f). —(OR1)k—OR2 (1) —R3—OR4 (2) —R5—(OR6)m—OR7 (3)
Abstract:
The present invention relates to an ion conducting polymer including a partially branched block copolymer; a method of preparing the same; an ion conductor including the ion conducting polymer; an electrolytic membrane including the ion conducting polymer; a membrane-electrode assembly comprising the electrolytic membrane, and a battery comprising the same; and a separation membrane for a redox flow battery including the ion conducting polymer, and a redox flow battery comprising same. Specifically, the partially branched block copolymer includes: a first block including a hydrophilic first polymer; a second block derived from a hydrophobic second polymer having two or more reactive groups respectively on its both ends, in such a way as to form branching points forming side branches on a main chain; and optionally a third block including a hydrophobic third polymer. The ion conducting polymer in the form of a partially branched block copolymer can prepare a polymer membrane having improved conductivity and superior physical properties such as tensile strength elongation at break, etc., while having the same or similar ion-exchange capacity (IEC), percentage water absorption and/or degree of dimensional change compared to conventional ion conducting polymers in the form of linear block copolymers. Because of such outstanding physical properties, the polymer membrane can be used as a membrane-electrode assembly for a fuel cell, and a redox flow battery comprising the same as a separation membrane can exhibit outstanding cell performance and maintain high discharge charge capacity retention rate even when repeatedly charged and discharged several times.
Abstract:
A composition and method of forming a composition including a compound including a poly(phenylene) backbone represented by the following formula: wherein each of R1, R2 and R3 may be the same or different and is H or an unsubstituted or inertly-substituted aromatic moiety; wherein Ar1 is an unsubstituted or inertly-substituted aromatic moiety; wherein R4 is an alkylene, perfluoroalkyl, polyethylene glycol, or polypropylene glycol moiety; wherein each of R6, R7, R8, R9, R10 and R11 is H or a monovalent hydrocarbon group including two to 18 carbon atoms, with the proviso that each R6, R7, R8, R9, R10 and R11 cannot be H; and wherein each of Y6, Y7, Y8, Y9, Y10 and Y11 may be the same or different and is H or a functional group are disclosed. The composition can be used as anion-exchange membranes and as an electrode binder material in anion exchange membrane fuel cells.
Abstract:
There is provided an organic polymer porous body having a first cyclic structure equipped with a 6-membered ring (A) or a 5-membered ring having three bonds; a second cyclic structure equipped with a 6-membered ring (B) having two or three bonds; and a carbon-carbon triple bond that links the first cyclic structure to the second cyclic structure. At least one of the first cyclic structure and the second cyclic structure contains at least one nitrogen atom.
Abstract:
Disclosed herein are thermally stable conducting polymers prepared by template polymerization of a conducting monomer in the presence of a sulfonated poly(amic acid). The resulting conducting polymer-sulfonated poly(amic acid) complex can be thermally converted to a conducting polymer-sulfonated poly(imide) complex having high thermal stability and high conductivity. Also disclosed are articles prepared from the thermally stable conducting polymer.