摘要:
An air-fuel ratio control system for an internal combustion engine, which, at the resumption of air-fuel ratio feedback control, is capable of setting the initial value of an integral term of the feedback control to a value properly learned in preceding feedback control, thereby enabling improvement of control accuracy. To feedback-control the output value of an O2 sensor to a target value, a target air-fuel ratio is calculated. During the feedback control, when it is determined that a predetermined condition in which it is estimated that exhaust gas air-fuel ratio upstream of the catalyst is excellently reflected on an exhaust gas air-fuel ratio at a location midway or downstream of the catalyst is satisfied, an adaptive law input calculated immediately before interruption of the feedback control is updated and stored as the initial value of an integral term for the following execution of the feedback control.
摘要:
An air-fuel ratio control apparatus for an internal-combustion engine includes an air-fuel-ratio sensor, a control-input calculator, an air-fuel-ratio controller, and a gain calculator. The air-fuel-ratio sensor is disposed in an exhaust channel in the internal-combustion engine and is configured to detect an air-fuel ratio in exhaust gas. The control-input calculator is configured to calculate a control input in accordance with an output value of the air-fuel-ratio sensor. The air-fuel-ratio controller is configured to perform a feedback control using the control input such that the output value of the air-fuel-ratio sensor reaches a target value. The gain calculator is configured to calculate a gain in accordance with the output value when the output value is leaner than the target value. The gain is to be used in calculating the control input.
摘要:
An air-fuel ratio control system for an internal combustion engine, which, at the resumption of air-fuel ratio feedback control, is capable of setting the initial value of an integral term of the feedback control to a value properly learned in preceding feedback control, thereby enabling improvement of control accuracy. To feedback-control the output value of an O2 sensor to a target value, a target air-fuel ratio is calculated. During the feedback control, when it is determined that a predetermined condition in which it is estimated that exhaust gas air-fuel ratio upstream of the catalyst is excellently reflected on an exhaust gas air-fuel ratio at a location midway or downstream of the catalyst is satisfied, an adaptive law input calculated immediately before interruption of the feedback control is updated and stored as the initial value of an integral term for the following execution of the feedback control.
摘要:
An air-fuel ratio control apparatus for an internal-combustion engine includes an air-fuel-ratio sensor, a control-input calculator, an air-fuel-ratio controller, and a gain calculator. The air-fuel-ratio sensor is disposed in an exhaust channel in the internal-combustion engine and is configured to detect an air-fuel ratio in exhaust gas. The control-input calculator is configured to calculate a control input in accordance with an output value of the air-fuel-ratio sensor. The air-fuel-ratio controller is configured to perform a feedback control using the control input such that the output value of the air-fuel-ratio sensor reaches a target value. The gain calculator is configured to calculate a gain in accordance with the output value when the output value is leaner than the target value. The gain is to be used in calculating the control input.
摘要:
A plant controller includes a feedback controller configured to calculate a control input provided to a plant so that a control output of the plant matches a target value. The feedback controller includes a controller transfer function that is a transfer function of the feedback controller. The controller transfer function is expressed by a product of an inverse transfer function of a transfer function of a control target model obtained by modeling the plant and a disturbance sensitivity correlation function defined using a sensitivity function. The sensitivity function indicates sensitivity of a disturbance to be applied to the plant with respect to the control output. The sensitivity function is defined by using a response characteristic parameter that indicates a response characteristic of the plant.
摘要:
An abnormality determination device for an air-fuel ratio sensor includes a differential value calculator and an abnormality determiner. The differential value calculator is configured to calculate a differential value of an output value of the air-fuel ratio sensor which is configured to detect an air-fuel ratio of exhaust gas. The abnormality determiner is configured to determine abnormality of the air-fuel ratio sensor based on a result of comparison between a reference output value of the air-fuel ratio sensor and a predetermined threshold. The reference output value is obtained by the air-fuel ratio sensor when the differential value calculated by the differential value calculator becomes a predetermined value.
摘要:
An abnormality determination device for an air-fuel ratio sensor includes a differential value calculator and an abnormality determiner. The differential value calculator is configured to calculate a differential value of an output value of the air-fuel ratio sensor which is configured to detect an air-fuel ratio of exhaust gas. The abnormality determiner is configured to determine abnormality of the air-fuel ratio sensor based on a result of comparison between a reference output value of the air-fuel ratio sensor and a predetermined threshold. The reference output value is obtained by the air-fuel ratio sensor when the differential value calculated by the differential value calculator becomes a predetermined value.
摘要:
When an engine load QC is equal to or larger than a predetermined value, an acceleration-state determiner determines that a turbine is in an acceleration state, and a supercharging-pressure-control-state determiner determines that supercharging-pressure controller (a bypass valve, a wastegate, and a variable flap) of a turbocharger are in a maximum supercharging pressure control state (a closed valve state), i.e., when a delay coefficient α of the turbocharger calculated by a delay-coefficient calculator on the basis of an actual supercharging pressure πc and a convergent value πc* of a supercharging pressure calculated by a convergent-value calculator indicates a value peculiar to the turbocharger, a failure of the supercharging-voltage controller is determined on the basis of the delay coefficient α. Thus, it is possible to secure a high failure detection accuracy, and increase a frequency of performing failure detection even when the engine load QC suddenly changes to cause a delay in a response of the supercharging pressure πc.
摘要:
An ozone purifier for a vehicle is configured of an ozone purification catalyst mounted on the vehicle; a first ozone concentration detection mechanism for detecting an ozone concentration in air before its passing the ozone purification catalyst; a second ozone concentration detection mechanism for detecting an ozone concentration in air after its passing the ozone purification catalyst; a deterioration detection mechanism for using output values of the first and second ozone concentration detection mechanisms and detecting deterioration of the ozone purification catalyst; and furthermore a mechanism for calibrating the output values of the first and second ozone concentration detection mechanisms, and when detecting the deterioration of the ozone purification catalyst, the purifier calibrates the output values of the first and second ozone concentration detection mechanisms.
摘要:
An air bypass valve failure detecting device outputs an opening command to an air bypass valve when a throttle valve suddenly closes, thereby prevent surging from occurring in a second intake passage between a turbocharger and a throttle valve. When the opening command is outputted to the air bypass valve, failure detection for the air bypass valve is permitted only if an intake air quantity of an engine immediately before a closing command is changed to the opening command is equal to or larger than a predetermined value. Thus, it is possible to prevent the failure detecting device from erroneously determining that the air bypass valve is normal although valve closing failure of the air bypass valve has occurred. This is because, when the intake air quantity is smaller than the predetermined value, surging does not occur in the second intake passage even if the valve closing failure of the airy bypass valve has occurred.