摘要:
The magneto-optical recording medium, including a transparent polycarbonate substrate, an interference layer made of SiN, a reading layer made of GdFeCo, a recording layer made of TbFeCo, an oxidation-preventing layer made of SiN, a irradiation layer made of Al and an ultraviolet-setting plastic layer, is disclosed. Each layer is deposited to a suitable thickness in the above-named order on the transparent polycarbonate substrate. The composition of each element in the reading layer and the recording layer is set to a suitable value to achieve acceptable characteristics. A high recording and reading density is achieved.
摘要:
In a magneto-optical recording medium comprising a recording layer and a reproducing layer, a transfer layer and a magnetic shielding layer are successively formed between the recording layer and the reproducing layer respectively. The reproducing layer is prepared from Gd33(Fe70Co30)67 changing from an in-plane magnetization film to a perpendicular magnetization film at 150° C., for example. The transfer layer is prepared from Gd28(Fe90Co10)72 changing from an in-plane magnetization film to a perpendicular magnetization film at 50° C., for example. The magnetic shielding layer is prepared from SiN, for example. The recording layer is prepared from Tb20(Fe90Co10)80 whose saturation magnetization is maximized around the transition temperature of 50° C. of the transfer layer. A signal can be directly recorded in the recording layer with no magnetic influence from the reproducing layer. A magnetic domain in the recording layer is transferred into the transfer layer by static magnetic interaction, and further transferred into the reproducing layer by exchange interaction. Thus, the signal can be stably reproduced in high density.
摘要:
In a magneto-optical recording medium comprising a recording layer and a reproducing layer, a transfer layer and a magnetic shielding layer are successively formed between the recording layer and the reproducing layer respectively. The reproducing layer is prepared from Gd33(Fe70Co30)67 changing from an in-plane magnetization film to a perpendicular magnetization film at 150° C., for example. The transfer layer is prepared from Gd28(Fe90Co10)72 changing from an in-plane magnetization film to a perpendicular magnetization film at 50° C., for example. The magnetic shielding layer is prepared from SiN, for example. The recording layer is prepared from Tb20(Fe90Co10)80 whose saturation magnetization is maximized around the transition temperature of 50° C. of the transfer layer. A signal can be directly recorded in the recording layer with no magnetic influence from the reproducing layer. A magnetic domain in the recording layer is transferred into the transfer layer by static magnetic interaction, and further transferred into the reproducing layer by exchange interaction. Thus, the signal can be stably reproduced in high density.
摘要:
In an electroluminescence element, a layered structure is employed for an upper electrode including a first upper conductive layer formed through evaporation, a buffer layer, and a second upper conductive layer formed through sputtering. By interposing the buffer layer between the first and second upper conductive layers, damages to a light emitting element layer formed below the upper electrode and containing an organic material or the like having a low resisting characteristic against sputtering environment can be prevented while a high level of a charge injection efficiency to the light emitting element layer is maintained for charges such as electrons and holes, and, at the same time, a conductive layer can be formed with superior coverage and uniformity, to a sufficient thickness, and with superior productivity. The buffer layer may have a multi-layer structure.
摘要:
The invention is directed to a higher contrast in a display device having a lighting device as a front light. A lighting portion is attached to a reflective liquid crystal display portion. A first transparent substrate and a second transparent substrate made of a glass substrate etc. are attached to each other with a sealing layer coated on those peripheral portions therebetween. The back surface of the first transparent substrate is attached to the reflective liquid crystal display portion, and an organic EL element is formed on the front surface of the first transparent substrate. The organic EL element is sealed in a space surrounded by the first transparent substrate, the second transparent substrate, and the sealing layer. The organic EL element is formed in a region corresponding to a pixel region of the reflective liquid crystal display portion. A desiccant layer is formed on the front surface of the second transparent substrate.
摘要:
Disclosed herein is a display including: a reflective image display section having pixels arranged in the display region; and a lighting device adapted to irradiate light to the image display section from diagonally in front, in which the light scattering characteristics in the display region are angle-dependent, and in which the lighting device irradiates light whose intensity distribution is adjusted so that when the display region displaying an image having an equal gray level is viewed from a given viewing position, the image luminance is uniform.
摘要:
Disclosed herein is a display including: a reflective image display section having pixels arranged in the display region; and a lighting device adapted to irradiate light to the image display section from diagonally in front, in which the light scattering characteristics in the display region are angle-dependent, and in which the lighting device irradiates light whose intensity distribution is adjusted so that when the display region displaying an image having an equal gray level is viewed from a given viewing position, the image luminance is uniform.
摘要:
An illumination device includes: a substrate; a first transparent electrode covering approximately an entire surface of a display region of the substrate; a second transparent electrode which overlaps with the first transparent electrode when seen in plan view and covers approximately the entire surface of the display region; and a plurality of island shaped light emitting elements disposed between the first transparent electrode and the second transparent electrode. The first and second transparent electrodes are formed as single continuous films.
摘要:
The invention is directed to a higher contrast in a display device having a lighting device as a front light. A lighting portion is attached to a reflective liquid crystal display portion. A first transparent substrate and a second transparent substrate made of a glass substrate etc. are attached to each other with a sealing layer coated on those peripheral portions therebetween. The back surface of the first transparent substrate is attached to the reflective liquid crystal display portion, and an organic EL element is formed on the front surface of the first transparent substrate. The organic EL element is sealed in a space surrounded by the first transparent substrate, the second transparent substrate, and the sealing layer. The organic EL element is formed in a region corresponding to a pixel region of the reflective liquid crystal display portion. A desiccant layer is formed on the front surface of the second transparent substrate.
摘要:
An illumination device includes: a substrate; a first transparent electrode covering approximately an entire surface of a display region of the substrate; a second transparent electrode which overlaps with the first transparent electrode when seen in plan view and covers approximately the entire surface of the display region; and a plurality of island shaped light emitting elements disposed between the first transparent electrode and the second transparent electrode. The first and second transparent electrodes are formed as single continuous films.