Abstract:
Techniques are provided for phase coherent frequency synthesis. An embodiment includes a first phase accumulator to accumulate a frequency control word (FCW) at a clocked rate to produce a first digital phase signal representing phase data corresponding to phase points on a first sinusoidal waveform. The embodiment also includes a second phase accumulator to produce an incrementing reference count at the clocked rate and multiply it by the FCW to produce a second digital phase signal representing phase data corresponding to phase points on a second sinusoidal waveform. The multiplication is performed in response to change in the FCW. The embodiment further includes a multiplexer to select between the first and second digital phase signals based on completion of the multiplication. The embodiment also includes a phase-to-amplitude converter to generate digital amplitude data corresponding to the phase points on a sinusoidal waveform associated with the selected digital phase signal.
Abstract:
A phase coherent fractional-N phase-locked loop synthesizer for maintaining phase coherence of a synthesized frequency includes a phase coherent delta-sigma modulator (DSM) having a plurality of feed-forward accumulator stages. The DSM is operatively coupled to a reference clock configured to generate a cyclical reference signal. The DSM configured to count a number of cycles of the reference signal, to cause, at each cycle of the reference signal, each of the stages of the DSM to accumulate a sum of a previous stage of the DSM, and to multiply each sum by a fractional divide word to produce a multiplier output, thereby causing the DSM to output a sequence of signals that tracks with the reference clock.
Abstract:
A clock distribution and alignment system includes at least three clock generators, each including a clock receiver circuit to receive a first clock signal having a first frequency, and a clock divider circuit to divide the received first clock signal into a second clock signal having a second frequency lower than the first frequency, each of two or more of the clock generators further including a phase detector circuit to compare the phase of the second clock signal with the phase of the second clock signal for a next one of the clock generators, and a clock adjuster circuit to adjust the phase of the received first clock signal based on the compared phases of the second clock signals. In some cases, the clock adjuster circuit is further to align the phases of the second clock signals to within a predefined tolerance of each other.
Abstract:
A true single-phase clocked multiplexer for outputting one of a plurality of input signals in synchronization with a clock signal and as selected by at least one select signal is provided. The multiplexer includes first transistors, second transistors, a first node between the first transistors, a second node between the second transistors, a third node coupled to the first node by one of the first transistors and to the second node by one of the second transistors, and a pre-charge transistor to couple the third node to a first voltage level. The first transistors are coupled to the first voltage level and configured to turn on in response to a gate voltage of a second voltage level different from the first voltage level. The second transistors are coupled to the second voltage level and configured to turn on in response to a gate voltage of the first voltage level.
Abstract:
A true single-phase clocked multiplexer for outputting one of a plurality of input signals in synchronization with a clock signal and as selected by at least one select signal is provided. The multiplexer includes first transistors, second transistors, a first node between the first transistors, a second node between the second transistors, a third node coupled to the first node by one of the first transistors and to the second node by one of the second transistors, and a pre-charge transistor to couple the third node to a first voltage level. The first transistors are coupled to the first voltage level and configured to turn on in response to a gate voltage of a second voltage level different from the first voltage level. The second transistors are coupled to the second voltage level and configured to turn on in response to a gate voltage of the first voltage level.
Abstract:
According to an embodiment, an improved flying adder circuit, comprises a fine clock, a coarse pulse clock, a rising edge triggered output connected to both the fine clock and the coarse pulse clock, a pulse clock connected to the rising edge triggered output, an adder, a 12-bit register situated to receive a signal from the adder and the pulse clock, and a single bit register situated to receive a signal from the pulse clock.