Abstract:
The present invention discloses a display panel, a displayer and the drive method thereof, the display panel comprising a cell substrate and an array substrate. The array substrate comprises a plurality of gate lines and a plurality of data lines, wherein, a sub-pixel unit is defined by an i-th line gate line, an (i+1)-th line gate line, a j-th column data line and a j+1-th column data line, wherein, i and j are both natural number. The outermost side of the cell substrate is provided with an FPR film array comprising a first FPR film and a second FPR film, wherein, the first FPR film is corresponding to the first pixel electrode so as to convert emitting light of the first pixel electrode into polarized light in a first direction, and the second FPR film is corresponding to the second pixel electrode so as to convert emitting light of the second pixel electrode into polarized light in a second direction, wherein, the first direction is different from the second direction. The displayer shows the original images as well as the interference image at the same time, thereby the original image shown in the displayer cannot be seen and the display information in displayer is protected effectively.
Abstract:
The present disclosure relates to a display substrate, a display device and a method for manufacturing the display substrate. The display substrate comprises a substrate, and a plurality of gate lines, a plurality of data lines and a plurality of common electrode lines which are formed above the substrate. The plurality of gate lines and the plurality of data lines are crossed to form a plurality of pixel units. Each of the plurality of pixel units comprises a thin film transistor and a pixel electrode electrically connected to the thin film transistor. The display substrate further comprises connection electrodes located above the substrate. Each of the connection electrodes connects two adjacent common electrode lines.
Abstract:
The present invention discloses an array substrate, a display panel, and a display device, for solving a problem of tip discharge a comb pixel electrode comprised in a sub-pixel unit in the prior art, which produces discharge to surrounding data lines, gate lines, and neighboring pixel electrodes, so that neighboring sub-pixel units are subject to interference and display effect is influenced. The array substrate comprises a base plate, the base plate is further provided with a plurality of sub-pixel units, each of the sub-pixel units comprises a pixel electrode of a comb structure, and the base plate is further provided with a shielding electrode which is electrically connected with the pixel electrode.
Abstract:
An array substrate and a display device is disclosed, for eliminating the interference of transient electromagnetic signals caused by the time-varying voltages on the gate lines and the data lines with the voltages on the pixel electrodes. The array substrate comprises gate lines and data lines disposed on a substrate, and pixel units surrounded and separated by the gate lines and the data lines; and the array substrate further comprises shielding electrodes disposed above at least one of the gate lines and the data lines to cover at least part of the at least one and electrically insulated from the gate lines and the data lines.
Abstract:
The present disclosure provides an array substrate and a display device. The array substrate includes gate lines, data lines, and thin film transistors (TFTs) connected to the gate lines and the data lines. At least one of the data lines is divided into a first branch and a second branch at a predetermined region where an intersection of the at least one of the data lines and at least one of the gate lines is located. The first branch overlaps the at least one of the gate lines, and has a width less than a width of a non-overlapping portion of the at least one of the data lines which does not overlap the at least one of the gate lines. The second branch overlaps a gate electrode of a corresponding one of the TFTs, and serves as, or is connected to, a source electrode of the corresponding TFT.
Abstract:
A method for driving a display panel is provided. The method includes receiving image data of a frame of image, the image data including a plurality of initial grayscale values respectively for a plurality of subpixels in the display panel; and converting the image data into a converted image data including a plurality of converted grayscale values respectively for the plurality of subpixels. Converting the image data includes compensating a respective initial grayscale value for a respective subpixel by at least a respective delay-compensating factor to obtain a respective converted grayscale value. With respect to a p-th subpixel and a q-th subpixel respectively connected to a respective data line and having a same initial grayscale values, a p-th delay-compensating factor for the p-th subpixel is greater than a q-th delay-compensating factor for the q-th subpixel.
Abstract:
The present disclosure provides a display substrate and a display device. A display substrate provided by an embodiment of the present disclosure includes: a display region and a peripheral region surrounding the display region; the display region includes: a plurality of gate lines, a plurality of data lines, and a plurality of pixel units, and each of the plurality of pixel units includes a driving transistor and a pixel electrode that are connected to each other; the peripheral region includes: signal lines and at least one electrostatic discharge structure for performing electrostatic discharge on the signal lines, and the electrostatic discharge structure includes a comb-shaped sixth electrostatic discharge pattern and a seventh electrostatic discharge pattern.
Abstract:
The present disclosure provides a display panel and a display device. The display panel includes: a first substrate; a second substrate in a superposed arrangement with the first substrate; and an auxiliary retaining wall located between the first and second substrates in an edge area of a facing portion of the first and second substrates. The auxiliary retaining wall includes a first retaining wall having a first sub-portion and a second sub-portion disposed opposite to each other, the second substrate comprises a bonding area outside of and adjoined by the facing portion, and the first and second sub-portions are located in areas corresponding to two opposite edges adjacent to an edge where the bonding area is located, respectively.
Abstract:
Embodiments of the disclosure provide a thin-film transistor, an array substrate, a display panel and a display device. The thin-film transistor includes a current enhancement portion, and the current enhancement portion is provided between a drain and a source. The current enhancement portion may include at least one protrusion portion, and the protrusion portion is provided on the drain and/or the source and faces a channel. The current enhancement portion may include an island portion provided between the drain and the source, and the island portion is separate from the drain and the source. The island portion may include at least one protrusion end, and the at least one protrusion end faces the drain and/or the source.
Abstract:
A pixel driving circuit, an array substrate and a display device are provided. The pixel driving circuit includes a first interlayer dielectric layer and a second interlayer dielectric layer. The first interlayer dielectric layer is arranged on the side of a gate layer lead away from a base substrate and is formed with a first via hole exposing the gate layer lead. The second interlayer dielectric layer is arranged on the side of the first interlayer dielectric layer away from the base substrate and is formed with a second via hole exposing the first via hole. A source drain layer lead is arranged on the side of the second interlayer dielectric layer away from the base substrate and is electrically connected to the gate layer lead through the first via hole and the second via hole.