Abstract:
A tiltrotor aircraft can include a pylon rotatable about a conversion axis. A first differential planetary assembly can include a first housing; a first ring gear; a first differential planetary gear having a first output portion; and a first differential sun gear. A second differential planetary assembly can include a second housing; a second ring gear; a second differential planetary gear having a second output portion; and a second differential sun gear. The first output portion is coupled to the second housing such that the second housing rotates at a first output speed. Further, the second output portion is coupled to the shaft, the shaft being coupled to the pylon such that rotation of the shaft rotates the pylon.
Abstract:
A tiltrotor aircraft includes a fuselage; a wing member having a first rib, a second rib, a first spar, second spar; and an upper wing skin; an engine disposed at a fixed location relative to the wing member; and a proprotor having a spindle gearbox, rotor mast, and a plurality of rotor blades drivable in rotation about the rotor mast, the spindle gearbox being rotatable about a conversion axis. The spindle gearbox is located above the upper wing skin of the wing member.
Abstract:
A rotor system for tilt rotor aircraft comprises an engine disposed at a first fixed position on a wing member, and a prop-rotor pylon mechanically coupled to the engine along a drive path extending through the wing member. The engine is disposed adjacent a fuselage of the tilt rotor aircraft, and the prop-rotor pylon is configured to selectively rotate between a vertical position and a horizontal position. The prop-rotor pylon is coupled to a plurality of rotor blades.
Abstract:
A tiltrotor aircraft can include a pylon rotatable about a conversion axis. A first differential planetary assembly can include a first housing; a first ring gear; a first differential planetary gear having a first output portion; and a first differential sun gear. A second differential planetary assembly can include a second housing; a second ring gear; a second differential planetary gear having a second output portion; and a second differential sun gear. The first output portion is coupled to the second housing such that the second housing rotates at a first output speed. Further, the second output portion is coupled to the shaft, the shaft being coupled to the pylon such that rotation of the shaft rotates the pylon.
Abstract:
A support assembly for coupling a first gearbox to an airframe of an aircraft. The first gearbox has an output gear operable to transfer torque to an input gear of a second gearbox via a common shaft rotatable about a longitudinal axis. The support assembly includes a fixed joint proximate the longitudinal axis. A first directional reacting joint remote from the longitudinal axis provides a first radial growth degree of freedom to the first gearbox relative to the longitudinal axis. A second directional reacting joint remote from the longitudinal axis provides a second radial growth degree of freedom to the first gearbox relative to the longitudinal axis. The first radial growth degree of freedom is not parallel with the second radial growth degree of freedom such that the support assembly maintains the output gear of the first gearbox in substantial collinear alignment with the input gear of the second gearbox.
Abstract:
A drive system for a tiltrotor aircraft includes a first gearbox rotatably mounted to the airframe and rotatable about a longitudinal axis to operate the tiltrotor aircraft between helicopter and airplane modes. A second gearbox extends generally normal to the longitudinal axis of the first gearbox. A common shaft, rotatable about the longitudinal axis, transfers torque from an output gear of the second gearbox to an input gear of the first gearbox. A support assembly couples the second gearbox to the airframe and includes a fixed joint proximate the longitudinal axis, a first directional reacting joint remote from the longitudinal axis providing a first radial growth degree of freedom to the second gearbox and a second directional reacting joint remote from the longitudinal axis providing a second radial growth degree of freedom to the second gearbox that is not parallel with the first radial growth degree of freedom.
Abstract:
A rotor system for tilt rotor aircraft comprises an engine disposed at a first fixed position on a wing member, and a prop-rotor pylon mechanically coupled to the engine along a drive path extending through the wing member. The engine is disposed adjacent a fuselage of the tilt rotor aircraft, and the prop-rotor pylon is configured to selectively rotate between a vertical position and a horizontal position. The prop-rotor pylon is coupled to a plurality of rotor blades.
Abstract:
A method for calculating torque through a rotor mast of a propulsion system of a tiltrotor aircraft includes receiving the torque being applied through a quill shaft of the rotorcraft. The quill shaft is located between a fixed gearbox and a spindle gearbox, and the spindle gearbox is rotable about a conversion access. The torque through the rotor mast is determined by using the torque through the quill shaft and the efficiency loss value between the quill shaft and the rotor mast.
Abstract:
A tiltrotor aircraft includes a fuselage; a wing member having a first rib, a second rib, a first spar, second spar; and an upper wing skin; an engine disposed at a fixed location relative to the wing member; and a proprotor having a spindle gearbox, rotor mast, and a plurality of rotor blades drivable in rotation about the rotor mast, the spindle gearbox being rotatable about a conversion axis. The spindle gearbox is located above the upper wing skin of the wing member.
Abstract:
A rotor system for tilt rotor aircraft comprises an engine disposed at a first fixed location on a wing member; a prop-rotor pylon mechanically coupled to the engine along a drive path, and a gearbox disposed in the drive path. The prop-rotor pylon is rotatably mounted on a spindle, and the prop-rotor pylon is configured to selectively rotate about a rotational axis of the spindle between a vertical position and a horizontal position. The gearbox comprises a rotational axis aligned with the rotational axis of the spindle.