ACTIVE PREDICTION OF DIVERSE SEARCH INTENT BASED UPON USER BROWSING BEHAVIOR
    11.
    发明申请
    ACTIVE PREDICTION OF DIVERSE SEARCH INTENT BASED UPON USER BROWSING BEHAVIOR 审中-公开
    基于用户浏览行为的多元搜索内容的主动预测

    公开(公告)号:US20110258148A1

    公开(公告)日:2011-10-20

    申请号:US12762423

    申请日:2010-04-19

    Inventor: Bin Gao Tie-Yan Liu

    CPC classification number: G06F17/30867

    Abstract: Many search engines attempt to understand and predict a user's search intent after the submission of search queries. Predicting search intent allows search engines to tailor search results to particular information needs of the user. Unfortunately, current techniques passively predict search intent after a query is submitted. Accordingly, one or more systems and/or techniques for actively predicting search intent from user browsing behavior data are disclosed herein. For example, search patterns of a user browsing a web page and shortly thereafter performing a query may be extracted from user browsing behavior. Queries within the search patterns may be ranked based upon a search trigger likelihood that content of the web page motivated the user to perform the query. In this way, query suggestions having a high search trigger likelihood and a diverse range of topics may be generated and/or presented to users of the web page.

    Abstract translation: 许多搜索引擎尝试在提交搜索查询之后了解和预测用户的搜索意图。 预测搜索意图允许搜索引擎根据用户的特定信息需求定制搜索结果。 不幸的是,目前的技术在提交查询后被动地预测搜索意图。 因此,本文公开了一种或多种用于从用户浏览行为数据主动地预测搜索意图的系统和/或技术。 例如,可以从用户浏览行为中提取浏览网页的用户的搜索模式并且之后不久执行查询。 搜索模式中的查询可以基于网页内容促使用户执行查询的搜索触发可能性来排序。 以这种方式,可以产生和/或向网页的用户呈现具有高搜索触发可能性和不同范围的主题的查询建议。

    Anti-spam tool for browser
    12.
    发明授权
    Anti-spam tool for browser 有权
    用于浏览器的反垃圾邮件工具

    公开(公告)号:US07860971B2

    公开(公告)日:2010-12-28

    申请号:US12035124

    申请日:2008-02-21

    CPC classification number: G06F17/30899 G06F21/50

    Abstract: An anti-spam tool works with a web browser to detect spam webpages locally on a client machine. The anti-spam tool can be implemented either as a plug-in module or an integral part of the browser, and manifested as a toolbar. The tool can perform an anti-spam action whenever a webpage is accessed through the browser, and does not require direct involvement of a search engine. A spam detection module installed on the computing device determines whether a webpage being accessed or whether a link contained in the webpage being accessed is spam, by comparing the URL of the webpage or the link with a spam list. The spam list can be downloaded from a remote search engine server, stored locally and updated from time to time. A two-level indexing technique is also introduced to improve the efficiency of the anti-spam tool's use of the spam list.

    Abstract translation: 反垃圾邮件工具与网络浏览器配合使用,可以在客户机上本地检测垃圾邮件网页。 反垃圾邮件工具可以作为插件模块或浏览器的组成部分来实现,并且表现为工具栏。 每当通过浏览器访问网页时,该工具都可以执行反垃圾邮件操作,并且不需要直接参与搜索引擎。 安装在计算设备上的垃圾邮件检测模块通过将网页或链接的URL与垃圾邮件列表进行比较来确定正在访问的网页是否被访问的网页中包含的链接是垃圾邮件。 垃圾邮件列表可以从远程搜索引擎服务器下载,本地存储和不时更新。 还引入了两级索引技术,以提高反垃圾邮件工具使用垃圾邮件列表的效率。

    Calculating Web Page Importance
    13.
    发明申请
    Calculating Web Page Importance 有权
    计算网页重要性

    公开(公告)号:US20100250555A1

    公开(公告)日:2010-09-30

    申请号:US12413502

    申请日:2009-03-27

    Inventor: Bin Gao Tie-Yan Liu

    CPC classification number: G06F17/30864

    Abstract: The page ranking technique described herein employs a Markov Skeleton Mirror Process (MSMP), which is a particular case of Markov Skeleton Processes, to model and calculate page importance scores. Given a web graph and its metadata, the technique builds an MSMP model on the web graph. It first estimates the stationary distribution of a EMC and views it as transition probability. It next computes the mean staying time using the metadata. Finally, it calculates the product of transition probability and mean staying time, which is actually the stationary distribution of MSMP. This is regarded as page importance.

    Abstract translation: 本文描述的页面排序技术使用马尔可夫骨架镜像过程(MSMP),其是马可夫骨骼过程的特定情况,用于建模和计算页面重要性分数。 给定一个网络图及其元数据,该技术在网络图上构建一个MSMP模型。 它首先估计了EMC的固定分布,并将其视为转移概率。 接下来使用元数据计算平均停留时间。 最后,计算转移概率和平均停留时间的乘积,实际上是MSMP的固定分布。 这被认为是页面重要性。

    Forum Mining for Suspicious Link Spam Sites Detection
    14.
    发明申请
    Forum Mining for Suspicious Link Spam Sites Detection 有权
    可疑链接垃圾邮件站点检测的论坛挖掘

    公开(公告)号:US20090198673A1

    公开(公告)日:2009-08-06

    申请号:US12027259

    申请日:2008-02-06

    CPC classification number: G06F17/30864

    Abstract: An anti-spam technique for protecting search engine ranking is based on mining search engine optimization (SEO) forums. The anti-spam technique collects webpages such as SEO forum posts from a list of suspect spam websites, and extracts suspicious link exchange URLs and corresponding link formation from the collected webpages. A search engine ranking penalty is then applied to the suspicious link exchange URLs. The penalty is at least partially determined by the link information associated with the respective suspicious link exchange URL. To detect more suspicious link exchange URLs, the technique may propagate one or more levels from a seed set of suspicious link exchange URLs generated by mining SEO forums.

    Abstract translation: 用于保护搜索引擎排名的反垃圾邮件技术是基于挖掘搜索引擎优化(SEO)论坛。 反垃圾邮件技术从可疑垃圾邮件网站列表中收集诸如SEO论坛帖子的网页,并从收集的网页中提取可疑链接交换网址和相应的链接形成。 然后将搜索引擎排名惩罚应用于可疑链接交换URL。 惩罚至少部分地由与相应的可疑链接交换URL相关联的链接信息确定。 为了检测更多可疑的链接交换URL,该技术可以从采矿SEO论坛产生的可疑链接交换URL的种子集传播一个或多个级别。

    SPECTRAL CLUSTERING USING SEQUENTIAL MATRIX COMPRESSION
    15.
    发明申请
    SPECTRAL CLUSTERING USING SEQUENTIAL MATRIX COMPRESSION 失效
    使用序列矩阵压缩的光谱聚类

    公开(公告)号:US20080275862A1

    公开(公告)日:2008-11-06

    申请号:US11743942

    申请日:2007-05-03

    CPC classification number: G06K9/6224 G06F17/3071

    Abstract: A clustering system generates an original Laplacian matrix representing objects and their relationships. The clustering system initially applies an eigenvalue decomposition solver to the original Laplacian matrix for a number of iterations. The clustering system then identifies the elements of the resultant eigenvector that are stable. The clustering system then aggregates the elements of the original Laplacian matrix corresponding to the identified stable elements and forms a new Laplacian matrix that is a compressed form of the original Laplacian matrix. The clustering system repeats the applying of the eigenvalue decomposition solver and the generating of new compressed Laplacian matrices until the new Laplacian matrix is small enough so that a final solution can be generated in a reasonable amount of time.

    Abstract translation: 聚类系统生成表示对象及其关系的原始拉普拉斯矩阵。 聚类系统首先将特征值分解求解器应用于原始拉普拉斯矩阵进行多次迭代。 然后,聚类系统识别所得到的特征向量的元素是稳定的。 然后,聚类系统聚合对应于所识别的稳定元素的原始拉普拉斯矩阵的元素,并形成作为原始拉普拉斯矩阵的压缩形式的新的拉普拉斯矩阵。 聚类系统重复应用特征值分解求解器和生成新的压缩拉普拉斯矩阵,直到新的拉普拉斯矩阵足够小,以便在合理的时间内生成最终解。

    DETECTING WEB SPAM FROM CHANGES TO LINKS OF WEB SITES
    16.
    发明申请
    DETECTING WEB SPAM FROM CHANGES TO LINKS OF WEB SITES 审中-公开
    检测网站垃圾邮件从网站链接变更

    公开(公告)号:US20080147669A1

    公开(公告)日:2008-06-19

    申请号:US11611113

    申请日:2006-12-14

    CPC classification number: G06F16/951

    Abstract: A method and system for determining whether a web site is a spam web site based on analysis of changes in link information over time is provided. A spam detection system collects link information for a web site at various times. The spam detection system extracts one or more features from the link information that relate to changes in the link information over time. The spam detection system then generates an indication of whether the web site is a spam web site using a classifier that has been trained to detect whether the extracted feature indicates that the web site is likely to be spam.

    Abstract translation: 提供一种用于基于对随着时间的链接信息的变化的分析来确定网站是否是垃圾网站的方法和系统。 垃圾邮件检测系统在不同时间收集网站的链接信息。 垃圾邮件检测系统从与链接信息随时间变化相关的链接信息中提取一个或多个特征。 然后,垃圾邮件检测系统使用已经被训练来检测所提取的特征是否指示该网站可能是垃圾邮件的分类器来生成网站是否是垃圾邮件网站的指示。

    Page selection for indexing
    17.
    发明授权
    Page selection for indexing 有权
    索引的页面选择

    公开(公告)号:US08645288B2

    公开(公告)日:2014-02-04

    申请号:US12959060

    申请日:2010-12-02

    CPC classification number: G06F17/30873 G06F17/30867

    Abstract: Some implementations provide techniques for selecting web pages for inclusion in an index. For example, some implementations apply regularization to select a subset of the crawled web pages for indexing based on link relationships between the crawled web pages, features extracted from the crawled web pages, and user behavior information determined for at least some of the crawled web pages. Further, in some implementations, the user behavior information may be used to sort a training set of crawled web pages into a plurality of labeled groups. The labeled groups may be represented in a directed graph that indicates relative priorities for being selected for indexing.

    Abstract translation: 一些实现提供用于选择包括在索引中的网页的技术。 例如,一些实现应用正则化来基于被爬网的网页之间的链接关系,从被爬网的网页提取的特征以及为至少一些被爬网的网页确定的用户行为信息来选择用于索引的被爬网网页的子集 。 此外,在一些实现中,可以使用用户行为信息来将爬网网页的训练集合分类成多个标记的组。 标记的组可以在有向图中表示,其指示被选择用于索引的相对优先级。

    Online Advertisement Perception Prediction
    18.
    发明申请
    Online Advertisement Perception Prediction 审中-公开
    在线广告感知预测

    公开(公告)号:US20130097011A1

    公开(公告)日:2013-04-18

    申请号:US13273924

    申请日:2011-10-14

    CPC classification number: G06Q30/02

    Abstract: An advertisement perception predictor may forecast the effectiveness of an online advertisement in a web page by predicting whether the online advertisement may be perceived by a consumer. The advertisement perception predictor may use a perception model that is trained for determining perception probability values of online advertisements. The perception model may be applied to an online advertisement to determine a perception probability value for the online advertisement. The perception probability value may indicate the likelihood that a consumer is likely to view the online advertisement.

    Abstract translation: 广告感知预测器可以通过预测在线广告是否可被消费者感知来预测网页中的在线广告的有效性。 广告感知预测器可以使用被训练用于确定在线广告的感知概率值的感知模型。 感知模型可以应用于在线广告以确定在线广告的感知概率值。 感知概率值可以指示消费者可能查看在线广告的可能性。

    Access Method and System for Cellular Mobile Communication Network
    19.
    发明申请
    Access Method and System for Cellular Mobile Communication Network 有权
    蜂窝移动通信网络接入方法与系统

    公开(公告)号:US20120100833A1

    公开(公告)日:2012-04-26

    申请号:US13257650

    申请日:2009-12-11

    Applicant: Bin Gao

    Inventor: Bin Gao

    Abstract: A method and system for accessing a cellular mobile communication network, the method includes: after a terminal and a base station complete a ranging process, the terminal carrying out a basic capability negotiation with the base station, the base station and the terminal carrying out a WAPI access authentication process; and the terminal carrying out a subsequent access flow to access the cellular mobile communication network; wherein the WAPI access authentication process includes: the terminal sending an access authentication request packet, including a certificate and a signature of the terminal, to the base station; the base station authenticating the signature of the terminal, including the certificate into a certificate authentication request packet to send to an authentication server to perform validation; the base station sending an access authentication response packet to the terminal, and carrying out a unicast session key negotiation with the terminal to obtain a unicast session key.

    Abstract translation: 一种用于接入蜂窝移动通信网络的方法和系统,所述方法包括:在终端和基站完成测距过程之后,终端与基站,基站和终端进行基本能力协商, WAPI访问认证过程; 并且终端执行随后的接入流以接入蜂窝移动通信网络; 其中所述WAPI接入认证过程包括:所述终端向所述基站发送包括所述终端的证书和所述签名的接入认证请求分组; 所述基站认证所述终端的签名,所述证书包括证书认证请求报文,发送给认证服务器进行验证; 所述基站向所述终端发送接入认证响应分组,并且与所述终端进行单播会话密钥协商以获得单播会话密钥。

    Calculating web page importance
    20.
    发明授权
    Calculating web page importance 有权
    计算网页重要性

    公开(公告)号:US08069167B2

    公开(公告)日:2011-11-29

    申请号:US12413502

    申请日:2009-03-27

    Inventor: Bin Gao Tie-Yan Liu

    CPC classification number: G06F17/30864

    Abstract: The page ranking technique described herein employs a Markov Skeleton Mirror Process (MSMP), which is a particular case of Markov Skeleton Processes, to model and calculate page importance scores. Given a web graph and its metadata, the technique builds an MSMP model on the web graph. It first estimates the stationary distribution of a EMC and views it as transition probability. It next computes the mean staying time using the metadata. Finally, it calculates the product of transition probability and mean staying time, which is actually the stationary distribution of MSMP. This is regarded as page importance.

    Abstract translation: 本文描述的页面排序技术使用马尔可夫骨架镜像过程(MSMP),其是马可夫骨骼过程的特定情况,用于建模和计算页面重要性分数。 给定一个网络图及其元数据,该技术在网络图上构建一个MSMP模型。 它首先估计了EMC的固定分布,并将其视为转移概率。 接下来使用元数据计算平均停留时间。 最后,计算转移概率和平均停留时间的乘积,实际上是MSMP的固定分布。 这被认为是页面重要性。

Patent Agency Ranking