Abstract:
A display apparatus includes a display substrate and a counter substrate. The display substrate includes a first substrate and a plurality of pixel electrodes formed on the first substrate. The counter substrate includes a second substrate facing the first substrate, a common electrode formed on the second substrate, a first spacer formed on the common electrode and making contact with the display substrate, a second spacer having a first gap with the display substrate, a third spacer having a second gap larger than the first gap with the display substrate, and a fourth spacer having a third gap larger than the second gap with the display substrate.
Abstract:
An array substrate includes a substrate including a display area and a peripheral area surrounding the display area, data lines disposed in the display area and including a portion thereof extending from the display area into the peripheral area at a first side of a periphery of the display area, and a repair line disposed in the peripheral area and crossing the portion of the data lines extending into the peripheral area. The array substrate also includes a static electricity diode part electrically connected to the repair line and a first data line of the data lines.
Abstract:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
Abstract:
A substrate for a display panel includes a base substrate, a plurality of signal lines, a plurality of signal pads corresponding to first end portions of the signal lines, a shorting bar corresponding to second end portions of the signal lines, a plurality of bridge lines on the base substrate disposed between the signal line and the shorting bar which electrically connects the signal line and the shorting bar. A color filter array panel opposite a TFT LCD panel substrate includes a medium dam layer which fully overlaps the bridge lines of the TFT LCD panel substrate. A data TFT for inspection having a source electrode coupled to the signal line, a drain electrode coupled to any one of the shorting bars, and a gate electrode coupled to a data TFT driving signal line ensures the normal operation of the display panel after the array test.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other, common voltage wiring disposed on the first substrate and transmitting a common voltage, a first insulating layer disposed on the common voltage wiring, a common electrode disposed on a whole surface of the second substrate, a first conductive member disposed between the first substrate and the second substrate and electrically connecting the common electrode and the common voltage wiring to each other, and a sealant combining the first substrate and the second substrate. The first insulating layer includes a first contact hole exposing a first portion of the common voltage wiring and a plurality of a second contact hole exposing a second portion of the common voltage wiring, the second contact hole having a smaller area than the first contact hole.
Abstract:
A gate driving circuit includes stages connected in series. In a stage, a pull-up part pulls up a present gate signal to a level of a first clock signal, and a pull-down part receives a next gate signal from a next stage to discharge the present gate signal to an off-voltage. A pull-up driving part turns on or turns off the pull-up part and the carry part. A holding part holds the present gate signal at the off-voltage and a present inverter turns on or turns off the holding part in response to the first clock signal. A ripple preventing capacitor is connected between a present node and an output terminal of a previous stage's inverter to prevent a ripple at the present Q-node in response to an output signal from the previous inverter.