Abstract:
Methods for compensating for warp typically exhibited by glass-based articles having non-uniform thicknesses as a result of ion exchange strengthening are provided. The methods include producing a molding surface of a mold based on a measurement of warp obtained by a specified ion exchange strengthening of a glass-based substrate of non-uniform thickness, such that the molding surface offsets the warp. Glass-based substrates resulting from the mold can then be exposed to the specified ion exchange strengthening and form glass-based articles that are substantially free of warp.
Abstract:
A glass-based article having an amorphous phase and a crystalline phase, and a first surface and a second surface opposing the first surface thereby defining a thickness (t) of the glass-based article. The glass-based article having a stress profile with a surface compressive stress (CS) and a maximum central tension (CT). The maximum CT is greater than or equal to 50 MPa and less than or equal to 200 MPa and is positioned within the glass-based article at a range from greater than or equal to 0.4·t and less than or equal to 0.6·t. The surface CS is greater than or equal to 200 MPa and less than or equal to 500 MPa, and a depth of compression (DOC) is from greater than or equal to 0.14·t and less than or equal to 0.25·t.
Abstract:
Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
Abstract:
Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
Abstract:
Glasses that can be chemically strengthened and are colored by transition metals. Most of the glasses are black, with some having high damage resistance and compressive surface layers having high compressive stress and depth of layer after ion exchange. These colored glasses do not require a post-forming heat treatment to produce color and are formable by fusions drawing, rolling, slot drawing, and float glass processes.
Abstract:
Glasses that can be chemically strengthened and are colored by transition metals. Most of the glasses are black, with some having high damage resistance and compressive surface layers having high compressive stress and depth of layer after ion exchange. These colored glasses do not require a post-forming heat treatment to produce color and are formable by fusions drawing, rolling, slot drawing, and float glass processes.
Abstract:
Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
Abstract:
A glass-based article having an amorphous phase and a crystalline phase, and a first surface and a second surface opposing the first surface thereby defining a thickness (t) of the glass-based article. The glass-based article having a stress profile with a surface compressive stress (CS) and a maximum central tension (CT). The maximum CT is greater than or equal to 50 MPa and less than or equal to 200 MPa and is positioned within the glass-based article at a range from greater than or equal to 0.4·t and less than or equal to 0.6·t. The surface CS is greater than or equal to 200 MPa and less than or equal to 500 MPa, and a depth of compression (DOC) is from greater than or equal to 0.14·t and less than or equal to 0.25·t.
Abstract:
A method of making a strengthened glass article includes providing a flat glass article having a select contour and a glass surface covered by a protective coating layer. The protective coating layer is removed from the glass surface without touching the glass surface with any solid object. Immediately after the protective coating layer is removed from the glass surface, the flat glass article is subjected to an ion-exchange process to strengthen the flat glass article and improve the resistance of the flat glass article to subsequent damage.
Abstract:
Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.