Abstract:
A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
Abstract:
A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
Abstract:
A filtration monitoring system is an electronic system control module installed on an internal combustion engine or within a vehicle powered by the internal combustion engine. The filtration monitoring system monitors the health and status of the filtration systems present on the engine. The filtration monitoring system tracks filter loading patterns and predicts remaining service life of the filters by running smart algorithms based on sensor feedback (e.g., pressure sensor feedback, fluid quality characteristic sensor feedback, etc.). In some arrangements, the described filtration monitoring systems provide feedback as to whether a genuine (i.e., authorized, OEM approved, etc.) or unauthorized filter cartridge is installed in a given filtration system. The filtration monitoring system may be retrofit into an existing internal combustion engine or vehicle that does not already have a filtration monitoring system.
Abstract:
A filtration monitoring system is an electronic system control module installed on an internal combustion engine or within a vehicle powered by the internal combustion engine. The filtration monitoring system monitors the health and status of the filtration systems present on the engine. The filtration monitoring system tracks filter loading patterns and predicts remaining service life of the filters by running smart algorithms based on sensor feedback (e.g., pressure sensor feedback, fluid quality characteristic sensor feedback, etc.). In some arrangements, the described filtration monitoring systems provide feedback as to whether a genuine (i.e., authorized, OEM approved, etc.) or unauthorized filter cartridge is installed in a given filtration system. The filtration monitoring system may be retrofit into an existing internal combustion engine or vehicle that does not already have a filtration monitoring system.
Abstract:
A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
Abstract:
A fluid delivery system for an internal combustion engine and a method of monitoring the fluid delivery system are described. The systems and methods monitor and determine various fluid quality parameters and filter element pressure drop, which can be used to determine real-time estimates of remaining useful life for both the filter element and the fluid. The respective remaining useful life calculations are used by the described systems and methods to determine change intervals for the fluid and the filter element. The change intervals can be synchronized by the systems and methods to reduce the amount of down time due to servicing of the fluid delivery system.
Abstract:
A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
Abstract:
Data relating to the status of a vehicle, an internal combustion engine powering the vehicle, and various filtration systems that provide filtered fluid to the vehicle and/or internal combustion engine is generated or gathered by an engine control module and a filtration monitoring system. The engine control module and the filtration monitoring system provide the data to a telematics system for transmitting the data to a remote data center (e.g., a cloud computing system, a remote diagnostics system, a maintenance system, etc.). Depending on an availability of a cellular data connection, the data is either sent directly to the remote data center via a network, or indirectly by first transmitting the data over a local connection to an operator device (e.g., a smartphone), which then sends the data to the remote data center once a connection to the network is available.
Abstract:
Systems and methods for determining, using service component authenticity detection contained in a sensor module, whether an authorized or genuine service component element is installed in an automotive system are described. The authorized service component determination may be based on close-range communication technology such as radio frequency identification (“RFID”) technology. An antenna in the sensor module may read the tag information from installed service component elements in a nearby service component and send any detected information into a filtration monitoring system. The filtration monitoring system or a remote diagnostic system analyzes the returned data (or absence thereof) to determine if a genuine (i.e., authorized, OEM approved, etc.) service component element is installed or not.
Abstract:
A system and method for monitoring the negative impact of a filtration system on the fuel economy of an internal combustion engine. A filter monitoring controller receives engine operating parameters of the internal combustion engine. The filter monitoring controller determines an amount of power generated by the internal combustion engine based at least in part on the engine operating parameters. The filter monitoring controller determines a filter hydraulic power consumption of a filtration system providing a fluid to the internal combustion engine. The filter monitoring controller determines a fuel economy impact of the filtration system on the internal combustion engine based at least in part on the filter hydraulic power consumption of the filtration system. The filter monitoring controller compares the fuel economy impact of the filtration system to a threshold fuel economy impact to determine whether a filter element of the filtration system requires servicing.