Abstract:
Novel tools and techniques are provided for implementing antenna structures to optimize transmission and reception of wireless signals from ground-based signal distribution devices, which include, but are not limited to, pedestals, hand holes, and/or network access point platforms. Wireless applications with such devices and systems might include, without limitation, wireless signal transmission and reception in accordance with IEEE 802.11a/b/g/n/ac/ad/af standards, UMTS, CDMA, LTE, PCS, AWS, EAS, BRS, and/or the like. In some embodiments, an antenna might be provided within a signal distribution device, which might include a container disposed in a ground surface. A top portion of the container might be substantially level with a top portion of the ground surface. The antenna might be communicatively coupled to one or more of at least one conduit, at least one optical fiber, at least one conductive signal line, or at least one power line via the container.
Abstract:
A system and method for controlling communications networks. Network performance information is gathered from a first communications network using performance information packet data packets. A network operator of the first communications network is controlled from a secondary communications network using the performance information packet data packets. Changes to the network operator are implemented based on instructions included in the performance information packet data packets.
Abstract:
The disclosed embodiments include a method, apparatus, and computer program product for modifying a three-dimensional geocellular model. For example, one disclosed embodiment includes a system that includes at least one processor and at least one memory coupled to the at least one processor. The memory stores instructions that when executed by the at least one processor performs operations that includes gathering network performance information regarding data flow communicated with a client of a network over a plurality of connections utilizing performance information packets; and automatically balancing the data flow of the plurality of connections between access points of the network that are available to the client using connection admission control engines.
Abstract:
A system and method for controlling communications networks. Network performance information is gathered from a first communications network using performance information packet data packets. A network operator of the first communications network is controlled from a secondary communications network using the performance information packet data packets. Changes to the network operator are implemented based on instructions included in the performance information packet data packets.
Abstract:
A system and method for controlling communications networks. Network performance information is gathered from a first communications network using performance information packet data packets. A network operator of the first communications network is controlled from a secondary communications network using the performance information packet data packets. Changes to the network operator are implemented based on instructions included in the performance information packet data packets.
Abstract:
Novel tools and techniques are provided for implementing antenna structures to optimize transmission and reception of wireless signals from ground-based signal distribution devices, which include, but are not limited to, pedestals, hand holes, and/or network access point platforms. Wireless applications with such devices and systems might include, without limitation, wireless signal transmission and reception in accordance with IEEE 802.11a/b/g/n/ac/ad/af standards, UMTS, CDMA, LTE, PCS, AWS, EAS, BRS, and/or the like. In some embodiments, an antenna might be provided within a signal distribution device, which might include a container disposed in a ground surface. A top portion of the container might be substantially level with a top portion of the ground surface. The antenna might be communicatively coupled to one or more of at least one conduit, at least one optical fiber, at least one conductive signal line, or at least one power line via the container.
Abstract:
A system and method for provisioning resources of a packet network, including monitoring at least one network performance information parameter associated with communications of data packets. The at least one network performance information parameter(s) may be compared with at least one respective threshold value indicative of degradation of communications of the data packets. A determination may be made that the network performance information parameter(s) crosses the respective threshold value(s). In response to determining that the network performance information parameter(s) crosses the respective threshold value(s), a network resource may be provisioned to compensate for the degradation of communications of the data packets.
Abstract:
Novel tools and techniques are provided for implementing antenna structures to optimize transmission and reception of wireless signals from ground-based signal distribution devices, which include, but are not limited to, cabinets, pedestals, hand holes, and/or network access point platforms. Wireless applications with such devices and systems might include, without limitation, wireless signal transmission and reception in accordance with IEEE 802.11a/b/g/n/ac/ad/af standards, UMTS, CDMA, LTE, PCS, AWS, EAS, BRS, and/or the like. In some embodiments, an antenna might be provided within a signal distribution device, which might include a container disposed in a ground surface. A top portion of the container might be substantially level with a top portion of the ground surface. The antenna might be communicatively coupled to at least one conduit, at least one optical fiber line, at least one conductive signal line, and/or at least one power line via an apical conduit system installed in a roadway.
Abstract:
Novel tools and techniques are provided for implementing antenna structures to optimize transmission and reception of wireless signals from ground-based signal distribution devices, which include, but are not limited to, pedestals, hand holes, and/or network access point platforms. Wireless applications with such devices and systems might include, without limitation, wireless signal transmission and reception in accordance with IEEE 802.11a/b/g/n/ac/ad/af standards, UMTS, CDMA, LTE, PCS, AWS, EAS, BRS, and/or the like. In some embodiments, an antenna might be provided within a signal distribution device, which might include a container disposed in a ground surface. A top portion of the container might be substantially level with a top portion of the ground surface. The antenna might be communicatively coupled to one or more of at least one conduit, at least one optical fiber, at least one conductive signal line, or at least one power line via the container.
Abstract:
Novel tools and techniques are provided for implementing antenna structures to optimize transmission and reception of wireless signals from ground-based signal distribution devices, which include, but are not limited to, cabinets, pedestals, hand holes, and/or network access point platforms. Wireless applications with such devices and systems might include, without limitation, wireless signal transmission and reception in accordance with IEEE 802.11a/b/g/n/ac/ad/af standards, UMTS, CDMA, LTE, PCS, AWS, EAS, BRS, and/or the like. In some embodiments, an antenna might be provided within a signal distribution device, which might include a container disposed in a ground surface. A top portion of the container might be substantially level with a top portion of the ground surface. The antenna might be communicatively coupled to at least one conduit, at least one optical fiber line, at least one conductive signal line, and/or at least one power line via an apical conduit system installed in a roadway.