Abstract:
One method as described herein relates to making a membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. Also as described herein is a hollow fiber polymer membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. The polyimide polymers include monomers comprising dianhydride monomers, diamino monomers without carboxylic acid functional groups, and optionally diamino monomers with carboxylic acid functional groups, wherein 2 to 10 mole % of the diamino monomers are bulky diamino compounds and the ratio of diamino monomers with carboxylic acid functional groups to diamino monomers without carboxylic acid functional groups is 0 to 2:3. These uncrosslinked high molecular weight polyimide polymers with a small amount of bulky diamine are useful in forming polymer membranes with high permeance and good selectivity that are useful for the separation of fluid mixtures.
Abstract:
The present invention is directed to the method drilling a borehole with monoester-based drilling fluid compositions. In some embodiments, the methods for making such monoester-based lubricants utilize a biomass precursor and/or low value Fischer-Tropsch (FT) olefins and/or alcohols so as to produce high value monoester-based drilling fluids. In some embodiments, such monoester-based drilling fluids are derived from FT olefins and fatty acids. The fatty acids can be from a bio-based source (i.e., biomass, renewable source) or can be derived from FT alcohols via oxidation.
Abstract:
The disclosure relates to drilling fluid compositions, and their method of use, comprising a C16 unbranched internal olefin, including blends of the C16 unbranched internal olefin and a C16 linear alpha olefin. The exemplary drilling fluids are characterized by properties, e.g., pour points and kinematic viscosities, that enable them to be particularly useful in deep water drilling operations and have reduced environmental impact, e.g., increased biodegradation and reduced sediment toxicity.
Abstract:
One method as described herein relates to making a high molecular weight, monoesterified polyimide polymer using a small amount of bulky diamine. These high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes with high permeance that are useful for the separation of fluid mixtures. Another method as described herein relates to making the crosslinked membranes from the high molecular weight, monoesterified polyimide polymer containing a small amount of bulky diamine. The small amount of bulky diamine allows for formation of both the high molecular weight polyimide polymer and for covalent ester crosslinks via reaction of the carboxylic acid groups with a diol crosslinking agent. This small amount of bulky diamines reduces chain mobility or segmental motion during crosslinking and reduces large loss of permeance. As such, this method provides a crosslinked membrane with good permeance and selectivity.
Abstract:
The present invention is directed to monoester-based drilling fluid compositions and the method of drilling a borehole with said compositions. In some embodiments, the methods for making such monoester-based lubricants utilize a biomass precursor and/or low value Fischer-Tropsch (FT) olefins and/or alcohols so as to produce high value monoester-based drilling fluids. In some embodiments, such monoester-based drilling fluids are derived from FT olefins and fatty acids. The fatty acids can be from a bio-based source (i.e., biomass, renewable source) or can be derived from FT alcohols via oxidation.