Abstract:
A power distribution system includes controller of a switching power converter to control the switching power converter and determine one or more switching power converter control parameters. In at least one embodiment, the switching power converter utilizes a transformer to transfer energy from a primary-side of the transformer to a secondary-side of the transformer. In at least one embodiment, the switching power converter control parameters includes a secondary-side conduction time delay that represents a time delay between when the primary-side ceases conducting a primary-side current and the secondary-side begins to conduct a secondary-side current. In at least one embodiment, determining and accounting for this secondary-side conduction time delay increases the prediction accuracy of the secondary-side current value and accurate delivery of energy to a load when the controller does not directly sense the secondary-side current provided to the load.
Abstract:
An electronic system and method includes a controller to control a switching power converter in at least two different modes of operation, a normal mode and an error reduction mode. The controller controls an amount of charge pushed (i.e. delivered) by the switching power converter to a load to reduce a charge quantization error. The charge quantization error represents an amount of charge pushed to the load beyond a target charge amount. The controller determines an amount of charge to be pushed to the toad. Based on the amount of charge to be pushed to the load, the controller generates a current control signal that controls a current control switch in the switching power converter. Determination of the control signal depends on whether the controller is operating in normal mode or error reduction mode. The controller attempts to reduce the charge quantization error to avoid power fluctuations.
Abstract:
A power distribution system includes controller of a switching power converter to control the switching power converter and determine one or more switching power converter control parameters. In at least one embodiment, the switching power converter utilizes a transformer to transfer energy from a primary-side of the transformer to a secondary-side of the transformer. In at least one embodiment, the switching power converter control parameters includes a secondary-side conduction time delay that represents a time delay between when the primary-side ceases conducting a primary-side current and the secondary-side begins to conduct a secondary-side current. In at least one embodiment, determining and accounting for this secondary-side conduction time delay increases the prediction accuracy of the secondary-side current value and accurate delivery of energy to a load when the controller does not directly sense the secondary-side current provided to the load.
Abstract:
In at least one embodiment, an electronic system adapts current control timing for half line cycle of a phase-cut input voltage and responsively controls a dimmer current in a power converter system. The adaptive current control time and responsive current control provides, for example, interfacing with a dimmer. The electronic system and method include a dimmer, a switching power converter, and a controller to control the switching power converter and controls a dimmer current. In at least one embodiment, the controller determines a predicted time period from a zero crossing until a leading edge of a phase-cut input voltage and then responsively controls the dimmer current to, for example, reduce current and voltage perturbations (referred to as “ringing”), improve efficiency, and reduce an average amount of power handled by various circuit components.