摘要:
A method and structure is provided for buffering data packets having a header and a remainder in a network processor system. The network processor system has a processor on a chip and at least one buffer on the chip. Each buffer on the chip is configured to buffer the header of the packets in a preselected order before execution in the processor, and the remainder of the packet is stored in an external buffer apart from the chip. The method comprises utilizing the header information to identify the location and extent of the remainder of the packet. The entire selected packet is stored in the external buffer when the buffer of the stored header of the given packet is full, and moving only the header of a selected packet stored in the external buffer to the buffer on the chip when the buffer on the chip has space therefor.
摘要:
Apparatus and method for storing network frame data which is to be modified. A plurality of buffers stores the network data which is arranged in a data structure identified by a frame control block and buffer control block. A plurality of buffer control blocks associated with each buffer storing the frame data establishes a sequence of the buffers. Each buffer control block has data for identifying a subsequent buffer within the sequence. The first buffer is identified by a field of a frame control block as well as the beginning and ending address of the frame data. The frame data can be modified without rewriting the data to memory by altering the buffer control block and/or frame control block contents without having to copy or rewrite the data in order to modify it.
摘要:
Systems and methods for scheduling data packets in a network processor are disclosed. Embodiments provide a network processor that comprises a best-effort scheduler with a minimal calendar structure for addressing schedule control blocks. In one embodiment, a four-entry calendar structure provides for rate-limited weighted best effort scheduling. Each of a plurality of different flows has associated schedule control blocks. Schedule control blocks are stored as linked lists in a last-in-first-out buffer. Each calendar entry is associated with a different linked list by storing in the calendar entry the address of the first-out schedule control block in the linked list. Each schedule control block has a counter and is assigned a rate limit according to the bandwidth priority of the flow to which the corresponding packet belongs. Each time a schedule control block is accessed from a last-in-first-out buffer storing the linked list, the scheduler generates a scheduling event and the counter of the schedule control block is incremented. When an incremented counter of a schedule control block equals its rate limit, the schedule control block is temporarily removed from further scheduling until a time interval concludes.
摘要:
A pipeline configuration is described for use in network traffic management for the hardware scheduling of events arranged in a hierarchical linkage. The configuration reduces costs by minimizing the use of external SRAM memory devices. This results in some external memory devices being shared by different types of control blocks, such as flow queue control blocks, frame control blocks and hierarchy control blocks. Both SRAM and DRAM memory devices are used, depending on the content of the control block (Read-Modify-Write or ‘read’ only) at enqueue and dequeue, or Read-Modify-Write solely at dequeue. The scheduler utilizes time-based calendars and weighted fair queueing calendars in the egress calendar design. Control blocks that are accessed infrequently are stored in DRAM memory while those accessed frequently are stored in SRAM.
摘要:
Methods, computer readable programs and network processor systems appropriate for IP fragmentation and reassembly on network processors comprising a plurality of buffers and buffer control blocks, the buffer control blocks comprising a buffer usage field, the buffer usage field having a value set responsive to a quantity of frame data fragments, wherein the network processor system associates a buffer control block with each buffer and frees a first buffer after reading a frame data fragment responsive to the first buffer control block buffer usage field value indicating only one frame data fragment is present in the first buffer.
摘要:
A network processor dataflow chip and method for flexible dataflow are provided. The dataflow chip comprises a plurality of on-chip data transmission and scheduling circuit structures. The data transmission and scheduling circuit structures are selected responsive to indicators. Data transmission circuit structures may comprise selectable frame processing and data transmission functions. Selectable frame processing may comprise cut and paste, full dispatch and store and dispatch frame processing. Scheduling functions include full internal scheduling, calendar scheduling in communication with an external scheduler, and external calendar scheduling. In another aspect of the present invention, data transmission functions may comprise low latency and normal latency external processor interfaces for selectively providing privileged access to dataflow chip resources.
摘要:
Access arbiters are used to prioritize read and write access requests to individual memory banks in DRAM memory devices, particularly fast cycle DRAMs. This serves to optimize the memory bandwidth available for the read and the write operations by avoiding consecutive accesses to the same memory bank and by minimizing dead cycles. The arbiter first divides DRAM accesses into write accesses and read accesses. The access requests are divided into accesses per memory bank with a threshold limit imposed on the number of accesses to each memory bank. The write receive packets are rotated among the banks based on the write queue status. The status of the write queue for each memory bank may also be used for system flow control. The arbiter also typically includes the ability to determine access windows based on the status of the command queues, and to perform arbitration on each access window.
摘要:
Systems and methods for implementing counters in a network processor with cost effective memory are disclosed. Embodiments include systems and methods for implementing counters in a network processor using less expensive memory such as DRAM. A network processor receives packets and implements accounting functions including counting packets in each of a plurality of flow queues. Embodiments include a counter controller that may increment counter values more than once during a R-M-W cycle. Each time a counter controller receives a request to update a counter during a R-M-W cycle that has been initiated for the counter, the counter controller increments the counter value received from memory. The incremented value is written to memory during the write cycle of the R-M-W cycle. A write disable unit disables writes that would otherwise occur during R-M-W cycles initiated for the counter during the earlier initiated R-M-W cycle.
摘要:
A mechanism is provided for merging in a network processor results from a parser and results from an external coprocessor providing processing support requested by said parser. The mechanism enqueues in a result queue both parser results needing to be merged with a coprocessor result and parser results which have no need to be merged with a coprocessor result. An additional queue is used to enqueue the addresses of the result queue where the parser results are stored. The result from the coprocessor is received in a simple response register. The coprocessor result is read by the result queue management logic from the response register and merged to the corresponding incomplete parser result read in the result queue at the address enqueued in the additional queue.
摘要:
A host Ethernet adapter (HEA) and method of managing network communications is provided. The HEA includes a host interface configured for communication with a multi-core processor over a processor bus. The host interface comprises a receive processing element including a receive processor, a receive buffer and a scheduler for dispatching packets from the receive buffer to the receive processor; a send processing element including a send processor and a send buffer; and a completion queue scheduler (CQS) for dispatching completion queue elements (CQE) from the head of the completion queue (CQ) to threads of the multi-core processor in a network node mode. The method comprises operatively coupling an Ethernet adapter to a multi-core processor system via a processor bus, selectively assigning a first plurality of packets to a first queue pair for servicing in an endpoint mode, running a device driver on the multi-core processing system, the device driver controlling the servicing of the first queue pair by dispatching the first plurality of packets to only one processor core of the multi-core processor system, selectively assigning a second plurality of packets to a second queue pair for servicing in a network node mode; and the Ethernet adapter controlling the servicing of the second queue pair by dispatching the second plurality of packets to multiple processor threads.