Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and an auger having a plurality of turns coupled to the outer surface of the cannula. A stent has a portion dimensioned to be disposed within a valley of the auger. Rotation of the cannula and the auger advances the portion of the stent in a predetermined longitudinal direction.
Abstract:
A prosthesis delivery device comprises a proximal end and a distal end, a prosthesis retention section at the proximal end, and a prosthesis retained on the prosthesis retention section. The prosthesis has a proximal end releasably attached at the prosthesis retention section and a distal end releasably attached at the prosthesis retention section. A sheath is slidably disposed over the prosthesis. A delivery handle near the distal end the delivery device comprises a rotatable inner cannula having a cannula lumen and cannula handle. The cannula handle is rotatable with the inner cannula. Further, a positioner handle is releasably engaged with the cannula handle. Rotation of the inner cannula releases the proximal end of the prosthesis from the delivery device and withdrawal of the sheath from over the prosthesis releases the distal end of the prosthesis from the delivery device.
Abstract:
A prosthesis delivery device comprises a cannula having an expandable positioning device disposed at the proximal end thereof. A prosthesis is retained on the cannula distal of the expandable device. Expansion of the expandable device retains and centers the delivery device and the prosthesis carried thereon in the vessel and allows repositioning of the prosthesis without contacting the proximal end of the prosthesis with the vessel walls prior to deployment.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
An expandable endoluminal prosthesis may include a graft body and a support structure attached to the graft body. The graft body may include a tubular body of nonwoven electrospun fibers disposed about a longitudinal axis. A first fiber matrix segment may be attached to and extend in a transverse direction along the tubular body. A second fiber matrix segment may be attached to and extend in a longitudinal direction along the tubular body.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and an auger having a plurality of turns coupled to the outer surface of the cannula. A stent has a portion dimensioned to be disposed within a valley of the auger. Rotation of the cannula and the auger advances the portion of the stent in a predetermined longitudinal direction.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
An endoluminal prosthesis may include a tubular main body and a branch. The main body may include proximal and distal end openings, a lumen, a sidewall, and a fenestration in the sidewall. The branch may include a tubular retrograde branch segment, a tubular antegrade branch segment, and a tubular branch junction. The retrograde branch segment may include an inlet opening fluidly coupled to the fenestration of the main body and an outlet opening fluidly coupled to the branch junction and positioned longitudinally between the proximal end opening and the fenestration of the main body. The antegrade branch segment may include an inlet opening fluidly coupled to the branch junction and an outlet opening positioned longitudinally distal of the inlet opening of the antegrade branch segment. The retrograde branch segment and the antegrade branch segment may be in fluid communication with one another through the branch junction.
Abstract:
A prosthesis delivery device comprises a proximal end and a distal end, a prosthesis retention section at the proximal end, and a prosthesis retained on the prosthesis retention section. The prosthesis has a proximal end releasably attached at the prosthesis retention section and a distal end releasably attached at the prosthesis retention section. A sheath is slidably disposed over the prosthesis. A delivery handle near the distal end the delivery device comprises a rotatable inner cannula having a cannula lumen and cannula handle. The cannula handle is rotatable with the inner cannula. Further, a positioner handle is releasably engaged with the cannula handle. Rotation of the inner cannula releases the proximal end of the prosthesis from the delivery device and withdrawal of the sheath from over the prosthesis releases the distal end of the prosthesis from the delivery device.