Abstract:
A connector body configured to interconnect with a corresponding mating connector body includes a pair of longitudinal struts that extend from the connector body and are oriented substantially parallel to a mating axis of the connector body. The longitudinal struts each define an enclosed lateral slot having a closed end and a connector position assurance (CPA) device that is interlocked within the lateral slots and moveable from an initial position to a final position along the mating axis after the connector body is coupled to the corresponding mating connector body. The CPA device has a lateral cross bar extending into each of the lateral slots thereby retaining the cross bar in the lateral slots. The CPA device and the connector body are integrally formed by an additive manufacturing process.
Abstract:
A connector system includes a first connector body defining a channel between a longitudinally-oriented fixed wall and a longitudinally-oriented flexible beam. The flexible beam is located opposite and generally parallel to the fixed wall when in a relaxed state. A distal surface of the flexible beam defines a first protrusion having a first inclined surface. A second connector body defines a cavity configured to receive the first connector body. A mesial surface inside the cavity defines a second protrusion having a second inclined surface configured to engage the first inclined surface of the flexible beam when the connector bodies are mated. A member inserted into the channel causes the flexible beam to flex laterally and move the first inclined surface with respect to the second inclined surface sufficient to generate a longitudinal force between the first and second inclined surfaces and thus between the first and second connector bodies.
Abstract:
An electrical connector configured to retain an electrical terminal including a terminal lock nib that projects inward into a terminal cavity from a first cavity wall for retaining the electrical terminal in the connector body and a flexible cantilever beam that projects axially into the terminal cavity from a fixed end of the cantilever beam. The cantilever beam is located opposite the terminal lock nib and is configured to push the terminal against a second cavity wall and into retaining engagement with the terminal lock nib. The connector also includes a support ridge that projects into the terminal cavity and is configured to contact and restrict movement of a free end of the cantilever beam during insertion of the terminal into the terminal cavity. The terminal has a laterally spaced lock surface engageable with the lock nib and is configured to prevent withdrawal of the terminal from the cavity.
Abstract:
A female electrical terminal includes a generally planar base member formed of a first conductive material. The base member includes a connection portion configured to electrically and mechanically contact with a corresponding male electrical terminal. The base member further includes an attachment portion configured to be attached to a wire cable. The female electrical terminal also includes a cover member that is formed of a second conductive material. The cover member longitudinally encircles the connection portion and defines a biasing member depending from the cover member and into a cavity formed by the cover member. The biasing member is configured to bias the male electrical terminal into electrical and frictional contact with the connection portion of the base member of the female electrical terminal. A method of producing such female terminal assemblies wherein the cover members are interconnected by a carrier strip is also provided.
Abstract:
An electrical connector having one or more pairs of opposing contact arms extending from a body portion and configured to receive a mating connector. A spring clamp member is positioned over the opposing contact arms to increase a compressive force of the contact arms on the mating connector. The contact arms include stabilizing features to limit lateral, longitudinal, and/or rotational movement of the spring clamp member relative to the contact arms. The contact arms may be formed of a material having a high electrical connectivity and the spring clamp member may be formed of a different material having a higher relaxation temperature than the contact arm material. The mating connector may include be a male blade type terminal.
Abstract:
An electrical connector assembly is provided. The assembly includes a terminal, a housing, and a seal. The seal is configured to create a moisture barrier between the housing and a mating connector. The seal defines a retainer portion that cooperates with the housing to retain the terminal to the housing.