Abstract:
In a multi-gap type electric rotating machine, side cores include an outside-side core connected to one end side of an outside core, and an inside-side core connected to one end side of an inside core. The outside-side core includes an outer-side rotor-opposite portion which projects from the inner periphery end of the outside core and is opposite to an end face at the outer periphery side of a rotor. The inside-side core includes an inner-side rotor-opposite portion which projects from the outer periphery end of the inside core and is opposite to an end face at the inner periphery side of the rotor. The outside-side core and the inside-side core are arranged so as to be opposed to each other in the radial direction thereof with a gap being interposed between the inner periphery end of the outer-side rotor-opposite portion and the outer periphery end of the inner-side rotor-opposite portion.
Abstract:
A device for driving a vehicle including an engine that serves as a power source of the vehicle, and a transmission that is connected to the engine, the engine and the transmission being arranged transversely such that an axial direction of an output shaft of the engine accords with a right-left direction of the vehicle includes a motor generator (MG) that serves as a power source of the vehicle, and a speed reducer that is connected to the MG. The MG and at least a part of the speed reducer are arranged outside of an engine compartment that accommodates the engine and the transmission. An output shaft of the speed reducer is connected to a power transmission system, which transmits power of an output shaft of the transmission to a drive shaft of a vehicle wheel to be capable of transmitting its power to the power transmission system.
Abstract:
A rotating electric machine includes a weld formed by welding end portions of a pair of electric conductors for forming a coil and a weld-insulating member that covers, at least, a surface of the weld. The weld has an uneven portion formed on at least part of the surface thereof. The uneven portion is constituted of a plurality of annular recesses and a plurality of annular protrusions. The annular recesses are formed alternately and continuously with the annular protrusions.
Abstract:
An electric rotary machine includes a stator, which Is fixed to a housing, composed of a stator core having a coil end protruding at an end face of the stator core, a rotor core formed by laminating core sheets, and a rotor having a pair of rotor side-plates sandwiching both end faces of the rotor core. The rotor core is rotatably supported in the housing facing an inner peripheral surface of the stator with a gap between the rotor core and the stator. Either one or both of the rotor side-plates has a concave surface in an outer surface of the side-plate that does not abut the rotor core. An axial distance from the end face of the rotor core to the concave surface increases from an inner diameter side to an outer diameter side.
Abstract:
A rotor includes a rotor core and permanent magnets. The rotor core includes annular bodies that are stacked in a stacking direction and each formed of core segments arranged along a circumferential direction. The number of the core segments in each of the annular bodies is set based on k, where k is the number of magnetic poles formed by the permanent magnets. The rotor core has n through-holes, where n≧k. The rotor further includes n fixing members each of which extends in the stacking direction through one corresponding through-hole of the rotor core. Between each circumferentially adjacent pair of the core segments, there is formed a gap that is greater than a clearance provided between the through-holes of the rotor core and the fixing members. At least one of the annular bodies is circumferentially offset from another annular body by an integer multiple of one magnetic pole.
Abstract:
A multi-gap type rotary electric machine is provided, where the machine is provided a shaft supported rotatably by a baring secured to a housing. An annular rotor is secured to the shaft and configured to rotate together with the shaft. Double stators are secured to the housing and configured to have gaps between the stators and the rotor. Relationships of: 3.5 0.5 (2) are met, where P6 denotes a circumferential width of each of outer salient poles, P7 denotes a circumferential width of each of inner salient poles, and P13 denotes a circumferential width of each of the outer magnets.
Abstract:
The multiple-gap electric rotating machine includes a rotor cantilever-supported at a first axial end thereof by a rotor arm coupled to a rotating shaft. The rotor includes a laminated core of core sheets made of soft magnetic material and an end-surface core disposed on a surface of the laminated core on a second axial end of the rotor. The laminated core includes segments joined in a ring and each formed with a salient pole structure at each of radially inner and outer peripheries thereof. The end-surface core includes soft magnetic sections made of steel and non-magnetic sections made of stainless steel, which are joined together in a ring. The laminated core is held between the rotor arm and the end-surface core, and fixed to the rotor arm by rivets penetrating through the rotor arm, laminated core and the end -surface core.