SUPPORTED CARBON MOLECULAR SIEVE MEMBRANES AND METHOD TO FORM THEM

    公开(公告)号:US20210138407A1

    公开(公告)日:2021-05-13

    申请号:US16621433

    申请日:2018-04-12

    Abstract: A supported carbon molecular sieve (CMS) membrane is made by contacting a film of a carbon forming polymer on a polymer textile to form a laminate. The laminate is then heated to a temperature for a time under an atmosphere sufficient to carbonize the film and polymer textile to form the supported CMS membrane. The supported CMS membrane formed is a laminate having a carbon separating layer graphitically bonded to a carbon textile, wherein the carbon separating layer is a continuous film. The supported CMS membranes are particularly useful for separating gases such as olefins from their corresponding paraffins.

    SEPARATION OF GASES VIA CARBONIZED VINYLIDENE CHLORIDE COPOLYMER GAS SEPARATION MEMBRANES AND PROCESSES THEREFOR

    公开(公告)号:US20190076793A1

    公开(公告)日:2019-03-14

    申请号:US16085038

    申请日:2017-03-14

    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.

    CARBON MOLECULAR SIEVE ADSORBENT MONOLITHS AND METHODS FOR MAKING THE SAME

    公开(公告)号:US20230030536A1

    公开(公告)日:2023-02-02

    申请号:US17788597

    申请日:2020-12-16

    Abstract: Methods for forming a carbon molecular sieve includes loading polymer fibers into a mold and heating the mold containing the polymer fibers to a temperature in a range from 50 ° C. to 350 ° C. to form a polymer monolith. The polymer monolith is then pyrolized by heating to a temperature in a range from 500 ° C. to 1700 ° C. A carbon molecular sieve monolith includes a first end and a second end opposite the first end, and carbon molecular sieve fibers aligned in parallel from the first end of the carbon molecular sieve monolith to the second end of the carbon molecular sieve monolith. Channels extend from the first end of the carbon molecular sieve monolith to the second end of the carbon molecular sieve monolith, and outer surfaces of the carbon molecular sieve fibers are joined. The carbon molecular sieve monolith has a cell density of greater than 500 cells per square inch.

    SEPARATION OF GASES VIA CARBONIZED VINYLIDENE CHLORIDE COPOLYMER GAS SEPARATION MEMBRANES AND PROCESSES THEREFOR

    公开(公告)号:US20210229045A1

    公开(公告)日:2021-07-29

    申请号:US17231358

    申请日:2021-04-15

    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.

Patent Agency Ranking