Abstract:
The present invention relates to an in-line blending apparatus and use therein for flocculating and dewatering an aqueous mineral suspension. Said method comprises blending an aqueous mineral suspension and a poly(ethylene oxide) (co)polymer using a progressive cavity pump. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
Abstract:
A process for preparing an isocyanate product includes providing a phosgene inlet stream and an amine in solvent inlet stream to a phosgenation mixer, the amine in-solvent inlet stream including one or more amines and one or more inert solvents, and during steady state operation compensating for a fouling pressure drop increase by decreasing a pressure drop in the phosgenation mixer over a time period divided into at least a first period of time T1 and a second period of time T2 that is subsequent to the first period of time T1. During the second period of time T2 an amine concentration of the one or more amines in the amine-in-solvent stream is higher than during the first period of time T1, and during the second period of time T2 a phosgene-to-amine ratio value in the phosgenation mixer is higher than during the first period of time T1.
Abstract:
The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene oxide polymers, in particular a mixture of one or more high molecular weight polyethylene oxide polymer and one or more ultra high molecular weight polyethylene oxide polymer. Said mixture of polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
Abstract:
Embodiments of the present invention relate to a mixing apparatus. Particularly, embodiments of the present invention provide a mixing apparatus for mixing fluid components such as phosgene and amine during a highly reactive chemical reaction. One embodiment provides a mixing conduit comprising a cylindrical sidewall defining an inner volume, wherein one or more jets are formed through the cylindrical sidewalls and connect to the inner volume and one or more flow obstructions disposed in the inner volume, wherein each flow obstruction is positioned upstream from an associated aperture.
Abstract:
A process includes: (a) injecting a steam composition into a subterranean location containing bitumen, the steam composition containing an alkylene glycol ether and steam, wherein the alkylene glycol ether is other than a glycol ether amine; and (b) recovering bitumen from the subterranean location to above the ground.
Abstract:
Disclosed are processes and apparatuses for producing a crystalline product. The processes and apparatuses may extend the operational time of an evaporative crystallizer by providing an internal volume or large deposit inventory for fouling deposits to reside without impacting the unit operation.
Abstract:
A falling film apparatus has tube inserts located at the top end of heat exchange tubes. The tube inserts have internal circumferential ribs. The ribs distribute a process flow into a uniform, annual film within the tube inserts and the tubes, and eliminate dry spots, even at low operating rates. This provides greater operating latitude, can improve operating efficiency and can reduce fouling.
Abstract:
Embodiments relate to a continuous process for treating tailings that includes providing tailings for treatment having at least 10 wt % solids, providing a mixing apparatus having a first inlet for feeding the tailings, a second inlet for feeding a non-dispersion liquid flocculant that includes a polyethylene glycol having a weight average molecular weight from 100 g/mol to 2,000 g/mol, and an outlet for a mixture of the tailings and the non-dispersion liquid flocculant, continuously introducing into the mixing apparatus the tailings through the first inlet and the non-dispersion liquid flocculant through the second inlet, and allowing the tailings and the non-dispersion liquid flocculant to mix to from the mixture of the tailings and the non-dispersion liquid flocculant.
Abstract:
Phosgene is mixed with an organic polyamine to produce polyisocyanate compounds. A phosgene flow is established in a conduit (15), and the organic polyamine is injected into the phosgene flow. A constricted region (4) of the conduit (15) resides downstream of the point of the polyamine injection. The presence of the constricted region (4) reduces by-product formation.
Abstract:
The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene oxide polymers, in particular a mixture of one or more high molecular weight polyethylene oxide polymer and one or more ultra high molecular weight polyethylene oxide polymer. Said mixture of polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.