Abstract:
The present disclosure provides for a sandstone-containing oil reservoir additive composition that includes (a) a nonionic wettability alteration agent having Formula (I): and (b) an injection fluid. For Formula (I), R is an alkyl residue from a branched secondary alcohol initiator, where R can have a carbon number of C4 to C10, x is from 3 to 10 and y is from 1 to 20. The injection fluid can be selected from the group consisting of sea water, engineered water, injection brine, produced brine or combinations thereof. The nonionic wettability agent in the sandstone reservoir additive composition can be from 0.01 weight percent (wt %) to 20 wt % based on the total weight of the sandstone reservoir additive composition. The sandstone-containing oil reservoir additive composition can be used in enhance oil recovery operations, such as a waterflooding operation or a carbon dioxide flooding operation.
Abstract:
The present invention includes a foam-forming composition for use in enhanced oil recovery, and a method of using said foam-forming composition for recovering oil. The foam-forming composition of the present invention comprises a nonionic surfactant, in particular an alcohol-alkoxylate, and an anionic surfactant, in particular an alkyl diphenyloxide (di)sulfonate, where the foam-forming composition promotes a formation of a stable foam formed of a CO2 and water.
Abstract:
Disclosed are processes and apparatuses for producing a crystalline product. The processes and apparatuses may extend the operational time of an evaporative crystallizer by providing an internal volume or large deposit inventory for fouling deposits to reside without impacting the unit operation.
Abstract:
Disclosed is a temperature stabilized aqueous wettability composition and method of use for the recovery of petroleum from subterranean formulations. Said aqueous wettability composition comprises a polyethylene oxide nonionic surfactant, a disulfonated anionic surfactant, and one or more alcohol.
Abstract:
Disclosed is a temperature stabilized aqueous wettability composition and method of use for the recovery of petroleum from subterranean formulations. Said aqueous wettability composition comprises a polyethylene oxide nonionic surfactant, a disulfonated anionic surfactant, and one or more alcohol.
Abstract:
Disclosed are processes and apparatuses for producing a crystalline product. The processes and apparatuses may extend the operational time of an evaporative crystallizer by providing an internal volume or large deposit inventory for fouling deposits to reside without impacting the unit operation.
Abstract:
Surfactants constructed from three synthetic building blocks that contain multiple hydrocarbon chains, ethyleneamine, and alkyl sulfonate salt groups, were shown to possess good thermal stability, and foamability, and high foam profiles. The materials are targeted for high temperature foaming applications, such as foam flooding enhanced oil recovery to improve conformance control and other oil and gas downhole foaming applications.
Abstract:
Embodiments of the present disclosure include modified nonionic surfactant formulations having a nonionic surfactant and a pour point depressant, where the modified nonionic surfactant formulations have a pour point of −54° C. to −75° C. In one or more embodiments, the modified nonionic surfactant formulations can be introduced into a flow of carbon dioxide, where the flow of carbon dioxide and the modified nonionic surfactant formulation are injected into an oil containing reservoir. In one or more embodiments, an emulsion of the carbon dioxide and the nonionic surfactant form in the oil containing reservoir, where the use of the pour point depressant provides minimal interference in forming the emulsion.
Abstract:
The present invention provides methods of using a mixture of two or more nonionic surfactants for enhanced oil recovery, where each nonionic surfactant is prepared with a double metal cyanide catalyst. The present invention also provides for an emulsion that includes carbon dioxide, a diluent and the mixture of nonionic surfactants.
Abstract:
Disclosed is an aqueous cementing slurry composition and a method of use thereof for cementing a pipe or casing in a borehole of a well using an aqueous cementing slurry composition comprising (a) a hydraulic cement, (b) a methylhydroxyethyl cellulose (HEMC) having an ethylene oxide molar substitution (EO MS) of from 0.16 to 0.22 and a methyl degree of substitution (M DS) of from 1.35 to 1.45, (c) water, and optionally (d) one or more other additives conventionally added to aqueous cementing compositions useful in cementing casings in the borehole of wells. Preferably, the aqueous cementing slurry composition is pumped downwardly into said casing, pumped upwardly into the annulus surrounding said casing until said aqueous composition fills that portion of the annular space desired to be sealed, and then maintaining said aqueous cementing composition in place until the cement sets.