摘要:
Magnetic or electric field sensors are mounted against a material surface and used for stress, strain, and load monitoring of rotating components such as vehicle drive trains. The stationary sensors are mounted at multiple locations around the component and used assess the stress on the component at multiple rotational positions. The sensor response is typically converted into a material property, such as magnetic permeability or electrical conductivity, which accounts for any coating thickness that may be present between the sensor and mounting surface. The sensors are not in direct contact with the rotating component and are typically mounted on an annular material or ring that encircles the rotating component. Measurements of the annular material properties, such as the stress, are related to the stress on the rotating component and discrete features on the component. As a particular example, the rotating component is a planetary gear system, with sensors mounted on the ring gear and the discrete features are carrier plate posts. The sensors are preferably mounted at equal distances around the circumference of the component. The sensors and instrumentation may be removable and reusable for monitoring of additional components.
摘要:
The condition of insulating and semiconducting dielectric materials is assessed by a sensor array that uses electric fields to interrogate the test material. The sensor has a linear array of parallel drive conductors interconnected to form a single drive electrode and sense conductors placed on each side of and parallel to a drive conductor. Subsets of the sense conductors are interconnected to form at least two sense elements sensitive to different material regions. The sense conductors may be at different distances to the drive conductors, enabling measurement sensitivity to different depths into the test material. The material condition is assessed directly from the sense element responses or after conversion to an effective material property, such as an electrical conductivity or dielectric permittivity.
摘要:
The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses. The sensor responses can also be used to determine properties of the test material, such as electrical conductivity or magnetic permeability, prior to conversion to the material state. The states are used to support control decisions that control the process or operation causing the material condition to change.
摘要:
Inductive sensors measure the near surface properties of conducting and magnetic material. A sensor may have primary windings with parallel extended winding segments to impose a spatially periodic magnetic field in a test material. Those extended portions may be formed by adjacent portions of individual drive coils. Sensing elements provided every other half wavelength may be connected together in series while the sensing elements in adjacent half wavelengths are spatially offset. Certain sensors include circular segments which create a circularly symmetric magnetic field that is periodic in the radial direction. Such sensors are particularly adapted to surround fasteners to detect cracks and can be mounted beneath a fastener head. In another sensor, sensing windings are offset along the length of parallel winding segments to provide material measurements over different locations when the circuit is scanned over the test material. The distance from the sensing elements to the ends of the primary winding may be kept constant as the offset space in between sensing elements is varied. An image of the material properties can be provided as the sensor is scanned across the material.
摘要:
Fabrication of samples having material conditions or damage representative of actual components inspected by nondestructive testing involves sensors placed near or mounted on the material surface, such as flexible eddy current sensors or sensor arrays, to monitor the material condition while the sample is being processed. These sample typically have real cracks in or around holes, on curved surfaces, in and under coatings, and on shot peened or otherwise preconditioned surfaces. Processing, such as mechanical or thermal loading to introduce fatigue damage, is stopped once the material condition reaches a predetermined level.
摘要:
Predicting the remaining life of individual aircraft, fleets of aircraft, aircraft components and subpopulations of these components. This is accomplished through the use of precomputed databases of response that are generated from a model for the nonlinear system behavior prior to the time that decisions need to be made concerning the disposition of the system. The database is calibrated with a few data points, to account for unmodeled system variables, and then used with an input variable to predict future system behavior. These methods also permit identification of the root causes for observed system behavior. The use of the response databases also permits rapid estimations of uncertainty estimates for the system behavior, such as remaining life estimates, particularly, when subsets of an input variable distribution are passed through the database and scaled appropriately to construct the output distribution. A specific example is the prediction of remaining life for an aircraft component where the model calculates damage evolution, input variables are a crack size and the number of cycles, and the predicted parameters are the actual stress on the component and the remaining life.