摘要:
The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.
摘要:
A hybrid waveguide device includes a hollow core fiber having a core formed by a combination of solid material and gases. The hybrid nature of the core allows the hybrid device to transport a high energy high power laser beam having an ultra-short pulse width without damage to the hybrid device due to a higher tolerance of irradiance than single-matter cores. A waveguide device having a core with gases in addition to solid matter is characterized by a lower nonlinear refractive index coefficient (n2), lower numerical aperture, larger delivering laser beam size, and higher ionization potential of the gases. As a result, the hybrid waveguide fiber can transport ultra-short laser pulses having ablative energy levels and power levels, for example from a laser generating subassembly to a laser material-modification subassembly.
摘要:
The high-power-optical-amplifier of the present invention uses a number of spaced, thin slabs (e.g., disc-shaped doped-slabs that are stacked, with a space between discs), aligned to give an amplifier both with a high active cross-section and a very high surface area to volume ratio. More specifically, the present invention provides several methods that include the steps of aligning at least two or four slabs having a thickness dimension of less than one centimeter, substantially parallel to, and spaced from adjacent slabs, wherein the slab surfaces are rendered essentially non-reflective, optically pumping the slabs and passing an input beam through the surfaces wherein the beam is optically amplified in the slabs, and wherein the input beam is of an eye-safe wavelength.
摘要:
The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.
摘要:
The high-power-optical-amplifier of the present invention uses a number of spaced, thin slabs (e.g., disc-shaped doped-slabs that are stacked, with a space between discs), aligned to give an amplifier both with a high active cross-section and a very high surface area to volume ratio. More specifically, the present invention provides several methods that include the steps of aligning at least two or four slabs having a thickness dimension of less than one centimeter, substantially parallel to, and spaced from adjacent slabs, wherein the slab surfaces are rendered essentially non-reflective, optically pumping the slabs and passing an input beam through the surfaces wherein the beam is optically amplified in the slabs, and wherein the input beam is of an eye-safe wavelength.
摘要:
Systems and methods are disclosed for shutting down a laser system in an intelligent and flexible manner. An intelligent laser interlock system includes both hardwired components, and intelligent components configured to execute computing instructions. The hardwired components and the intelligent components are configured to shutdown the laser system to one or more alternative shutdown states in response to one or more interlock signals.
摘要:
A system and method for generating an optical laser pulse train of constant ultrashort pulse duration and low timing jitter in a fiber ring laser system (resonator) while keeping the laser resonator resilient to environmental conditions like temperature, humidity and pressure. The laser resonator may be actively mode-locked with a periodic electrically driven modulation at a specific frequency that corresponds to the inverse of the transit time inside the resonator. The optical pulse train quality may be monitored in real time, and the frequency of the modulation may be dynamically tuned in real time to compensate for resonator length changes due to changes in the environmental conditions.
摘要:
The present invention provides a method of generating an ultra-short pulse in a ring oscillator by amplifying a series of wavelength-swept-with time pulses using one or more amplifiers, compressing the amplified wavelength-swept-with time pulses, reducing the compressed pulses to sub-picosecond pulses, stretching the sub-picosecond pulses into wavelength-swept-with time pulses and returning the stretched pulses to the one or more amplifiers.
摘要:
The present invention comprises, in various embodiments, systems and methods for shutting down a laser system in an intelligent and flexible manner. An intelligent laser interlock system includes both hardwired components, and intelligent components configured to execute computing instructions. The hardwired components and the intelligent components are configured to shutdown the laser system to one or more alternative shutdown states in response to one or more interlock signals.
摘要:
A chirped pulse amplification (CPA) system and method is described wherein a pulse selector is added after a final amplifier in the system. The pulse selector is configured to select amplified pulses such that the system output repetition rate of the CPA system is below an ASE-limiting repetition rate of the amplifiers. The system may also comprise pulse pickers placed before the final amplifier to control pulse energy of the amplified pulses.